Advertisement

The Density Matrix – A First Approach

  • Ingolf V. Hertel
  • Claus-Peter Schulz
Part of the Graduate Texts in Physics book series (GTP)

Abstract

Those who want to benefit from reading the next chapter and other advanced text in AMO physics and are not yet familiar with the density matrix, should study the summary given in this chapter with some care. After some introductory remarks we shall start in Sect. 9.1.1 by defining the concept of pure and mixed states. In Sect. 9.1.2 we formally introduce the density operator and in Sect. 9.1.3 its matrix representation which will be illustrated by some simple examples. A general formalism for describing a physical measurement is derived in Sect. 9.2 and applied in Sect. 9.3 to two typical examples. Finally, in Sect. 9.4 we present an introduction to the general theory of radiation from quantum systems in non-isotropic and oriented excited states, based on the formalism developed by Fano and Macek (1973).

Keywords

Density Matrix Mixed State Pure State Density Operator Excited Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acronyms and Terminology

AMO:

‘Atomic, molecular and optical’, physics.

c.c.:

‘complex conjugate’.

esu:

‘electrostatic units’, old system of unities, equivalent to the Gauss system for electric quantities (see Appendix A.3 in Vol. 1).

FS:

‘Fine structure’, splitting of atomic and molecular energy levels due to spin orbit interaction and other relativistic effects (Chap.  6 in Vol. 1).

HFS:

‘Hyperfine structure’, splitting of atomic and molecular energy levels due to interactions of the active electron with the atomic nucleus (Chap.  9 in Vol. 1).

LHC:

‘Left hand circularly’, polarized light, also σ + light.

RHC:

‘Right hand circularly’, polarized light, also σ light.

References

  1. Andersen, N. and K. Bartschat: 2003. Polarization, Alignment and Orientation in Atomic Collisions. Berlin, Heidelberg: Springer. Google Scholar
  2. Andersen, N., K. Bartschat, J. T. Broad and I. V. Hertel: 1997a. ‘Collisional alignment and orientation of atomic outer shells: 3. Spin-resolved excitation’. Phys. Rep., 279, 252–396. CrossRefADSGoogle Scholar
  3. Andersen, N., J. T. Broad, E. E. B. Campbell, J. W. Gallagher and I. V. Hertel: 1997b. ‘Collisional alignment and orientation of atomic outer shells: 2. Quasi-molecular excitation, and beyond’. Phys. Rep., 278, 108–289. CrossRefADSGoogle Scholar
  4. Andersen, N., J. W. Gallagher and I. V. Hertel: 1988. ‘Collisional alignment and orientation of atomic outer shells: 1. Direct excitation by electron and atom impact’. Phys. Rep., 165, 1–188. CrossRefADSGoogle Scholar
  5. Bartschat, K., K. Blum, G. F. Hanne and J. Kessler: 1981. ‘Electron-photon coincidences with polarized electrons’. J. Phys. B, At. Mol. Phys., 14, 3761–3776. CrossRefADSGoogle Scholar
  6. Blum, K.: 2012. Density Matrix Theory and Applications. Atomic, Optical, and Plasma Physics 64. Berlin, Heidelberg: Springer, 3rd edn., 343 pages. CrossRefzbMATHGoogle Scholar
  7. Brink, D. M. and G. R. Satchler: 1994. Angular Momentum. Oxford: Oxford University Press, 3 edn., 182 pages. Google Scholar
  8. Fano, U. and J. H. Macek: 1973. ‘Impact excitation and polarization of emitted light’. Rev. Mod. Phys., 45, 553–573. CrossRefADSGoogle Scholar
  9. Greene, C. H. and R. N. Zare: 1983. ‘Determination of product population and alignment using laser-induced fluorescence’. J. Chem. Phys., 78, 6741–6753. CrossRefADSGoogle Scholar
  10. Hertel, I. V. and W. Stoll: 1978. ‘Collision experiments with laser excited atoms in crossed beams’. In: ‘Adv. Atom. Mol. Phys.’, vol. 13, 113–228. New York: Academic Press. Google Scholar
  11. Kleiman, V., H. Park, R. J. Gordon and R. N. Zare: 1998. Companion to Angular Momentum. New York: Wiley, 208 pages. Google Scholar
  12. Macek, J. and I. V. Hertel: 1974. ‘Theory of electron-scattering from laser-excited atoms’. J. Phys. B, At. Mol. Phys., 7, 2173–2188. CrossRefADSGoogle Scholar
  13. Mukamel, S.: 1999. Principles of Nonlinear Optical Spectroscopy. Oxford: Oxford University Press, 576 pages. Google Scholar
  14. Percival, I. C. and M. J. Seaton: 1958. ‘The polarization of atomic line radiation excited by electron impact’. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci., 251, 113–138. CrossRefADSGoogle Scholar
  15. Weissbluth, M.: 1989. Photon-Atom Interactions. New York, London, Toronto, Sydney, San Francisco: Academic Press, 407 pages. Google Scholar
  16. Zare, R. N.: 1988. Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics. New York: Wiley, 368 pages. Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ingolf V. Hertel
    • 1
  • Claus-Peter Schulz
    • 1
  1. 1.Max-Born-Institut für Nichtlineare Optikund KurzzeitspektroskopieBerlinGermany

Personalised recommendations