Advertisement

Inelastic Collisions – A First Overview

  • Ingolf V. Hertel
  • Claus-Peter Schulz
Part of the Graduate Texts in Physics book series (GTP)

Abstract

We introduce some characteristic questions about inelastic and reactive collisions and approaches to answer them for several important examples. We start in Sect. 7.1 with very simple models. The general trends for excitation processes as a function of the relative kinetic energy are presented in Sect. 7.2. Specifically, in Sect. 7.2.7 we focus on the threshold region. In Sect. 7.3 we introduce multichannel theory, and discuss the alternative adiabatic and diabatic viewpoints. In Sect. 7.4 we extend the semiclassical methods already employed in the elastic case. In Sect. 7.5 we make a short excursions into the world of collision processes with highly charged ions. Finally, we address reactive scattering processes in Sect. 7.6.

Keywords

Differential Cross Section Excitation Function Integral Cross Section High Kinetic Energy Inelastic Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acronyms and Terminology

a.u.:

‘atomic units’, see Sect.  2.6.2 in Vol. 1.

BO:

Born Oppenheimer’, approximation, the basis when solving the Schrödinger equation for molecules (see Sect.  3.2).

CC:

‘Close-coupling’, calculations, computation of scattering cross sections by solving (part of) the coupled integro-differential equations (see Sect.  8.1.1).

CCC:

‘Convergent close-coupling’, calculations, special solutions of the coupled integro-differential equations for collisions (see Sect.  8.1).

CCD:

‘Charge coupled device’, semiconductor device typically used for digital imaging (e.g. in electronic cameras).

CM:

‘Centre of mass’, coordinate system (or frame) (see Sect.  6.2.2).

COLTRIMS:

‘Cold target recoil ion momentum spectroscopy’, see Appendix B.4.

CW:

‘Continuous wave’, (as opposed to pulsed) light beam, laser radiation etc.

DCS:

‘Differential cross section’, see Sect.  6.2.1.

E1:

‘Electric dipole’, transitions induced by the interaction of an electric dipole with the electric field component of electromagnetic radiation.

EBIS:

‘Electron beam ion source’, source for highly charged ion beams see Sect. 7.5.

EBIT:

‘Electron beam ion trap’, source for highly charged ion beams see Sect. 7.5.

ECR:

‘Electron cyclotron resonance’, used e.g. in sources for highly charged ion beams see Sect. 7.5.

FC:

Franck-Condon’, introduced an important approximation for optical transition between electronic states (see Sect.  5.4.1).

FBA:

‘First order Born approximation’, approximation describing continuum wave functions by plane waves; used in collision theory and photoionization (see Sects.  6.6 and  5.5.2, Vol. 1, respectively).

HCI:

‘Highly charged ions’, see Sect. 7.5.

HF:

Hartree-Fock’, method (approximation) for solving a multi-electron Schrödinger equation, including exchange interaction.

HOMO:

‘Highest occupied molecular orbital’.

JWKB:

Jeffreys-Wentzel-Kramers-Brillouin’, semiclassical method to determine scattering phases.

MCP:

‘Multi channel plate’, electron multiplier with many amplifying elements.

MD:

‘Molecular dynamics’, classical trajectory computations for molecular systems.

MP2:

Møller-Plesset correction of 2nd order’, perturbative approach to correct HF energies for contributions from non-spherical repulsive potentials.

ODE:

‘Ordinary differential equation’.

QED:

‘Quantum electrodynamics’, combines quantum theory with classical electrodynamics and special relativity. It gives a complete description of light-matter interaction.

RCCC:

‘Relativistic convergent close-coupling’, relativistic version of CCC calculations (including spin orbit interaction).

RMPS:

‘R-matrix with pseudo-states method’, advanced quantum mechanical theory for electron scattering.

SEC:

‘Single electron capture’, see Sect. 7.5.1.

VMI:

‘Velocity map imaging’, experimental method for registration (and visualization) of particle velocities as a function of their angular distribution (see Appendix B).

References

  1. Allan, R. J. and H. J. Korsch: 1985. ‘2-state curve crossing processes involving rotational coupling in the \(\mathrm{Na}_{2}^{+}\) molecular ion’. Z. Phys. A, 320, 191–205. CrossRefADSGoogle Scholar
  2. Bähring, A., I. V. Hertel, E. Meyer, W. Meyer, N. Spies and H. Schmidt: 1984. ‘Excitation of laser state-prepared Na*(3p) to Na*(3d) in low-energy collisions with Na+: Experiment and calculations of the potential curves of \(\mathrm{Na}_{2}^{+}\)’. J. Phys. B, At. Mol. Phys., 17, 2859–2873. CrossRefADSGoogle Scholar
  3. Bandrauk, A. D. and M. S. Child: 1970. ‘Analytic predissociation linewidths from scattering theory’. Mol. Phys., 19, 95–111. CrossRefADSGoogle Scholar
  4. Barat, M., P. Roncin, L. Guillemot, M. N. Gaboriaud and H. Laurent: 1990. ‘Single and double electron-capture by C4+ ions colliding with helium target’. J. Phys. B, At. Mol. Phys., 23, 2811–2818. CrossRefADSGoogle Scholar
  5. Bartschat, K.: 1998. ‘Electron-impact excitation of helium from the 1 1S and 2 3S states’. J. Phys. B, At. Mol. Phys., 31, L469–L476. CrossRefADSGoogle Scholar
  6. Bommels, J., K. Franz, T. H. Hoffmann, A. Gopalan, O. Zatsarinny, K. Bartschat, M. W. Ruf and H. Hotop: 2005. ‘Low-lying resonances in electron-neon scattering: Measurements at 4-meV resolution and comparison with theory’. Phys. Rev. A, 71. Google Scholar
  7. Bostock, C. J.: 2011. ‘The fully relativistic implementation of the convergent close-coupling method’. J. Phys. B, At. Mol. Phys., 44, 083001. CrossRefADSGoogle Scholar
  8. Bostock, C. J., D. V. Fursa and I. Bray: 2010. ‘Relativistic convergent close-coupling method applied to electron scattering from mercury’. Phys. Rev. A, 82, 022713. CrossRefADSGoogle Scholar
  9. Buckman, S. J., P. Hammond, G. C. King and F. H. Read: 1983. ‘High-resolution electron-impact excitation-functions of metastable states of neon, argon, krypton and xenon’. J. Phys. B, At. Mol. Phys., 16, 4219–4236. CrossRefADSGoogle Scholar
  10. Buckman, S. J. and J. P. Sullivan: 2006. ‘Benchmark measurements and theory for electron(positron)-molecule(atom) scattering’. Nucl. Instrum. Methods B, 247, 5–12. CrossRefADSGoogle Scholar
  11. Campbell, E. E. B., H. Schmidt and I. V. Hertel: 1988. ‘Symmetry and angular momentum in collisions with laser excited polarized atoms’. Adv. Chem. Phys., 72, 37. Google Scholar
  12. Depaola, B. D., R. Morgenstern and N. Andersen: 2008. ‘Motrims: magneto-optical trap recoil ion momentum spectroscopy’. In: ‘Advances in Atomic, Molecular, and Optical Physic’, vol. 55, 139–189. Amsterdam: Elsevier. Google Scholar
  13. Dressler, R. A. et al.: 2006. ‘The study of state-selected ion-molecule reactions using the vacuum ultraviolet pulsed field ionization-photoion technique’. J. Chem. Phys., 125, 132306. CrossRefADSGoogle Scholar
  14. Dubois, A., S. E. Nielsen and J. P. Hansen: 1993. ‘State selectivity in H+-Na(3s/3p) collisions – Differential cross-sections, alignment and orientation effects for electron-capture’. J. Phys. B, At. Mol. Phys., 26, 705–721. CrossRefADSGoogle Scholar
  15. Franck, J. and G. Hertz: 1914. ‘Über Zusammenstöße zwischen Elektronen und Molekülen des Quecksilberdampfes und die Ionisierungsspannung desselben.’ Verh. Dtsch. Phys. Ges., 16, 457–467. Google Scholar
  16. Franck, J. and G. L. Hertz: 1925. ‘The Nobel prize in physics: for their discovery of the laws governing the impact of an electron upon an atom’, Stockholm. http://nobelprize.org/nobel_prizes/physics/laureates/1925/.
  17. Fursa, D. V. and I. Bray: 1995. ‘Calculation of electron-helium scattering’. Phys. Rev. A, 52, 1279–1297. CrossRefADSGoogle Scholar
  18. Gopalan, A., J. Bommels, S. Gotte, A. Landwehr, K. Franz, M. W. Ruf, H. Hotop and K. Bartschat: 2003. ‘A novel electron scattering apparatus combining a laser photoelectron source and a triply differentially pumped supersonic beam target: characterization and results for the He(1s 2s2) resonance’. Eur. Phys. J. D, 22, 17–29. CrossRefADSGoogle Scholar
  19. Grieser, M. et al.: 2012. ‘Storage ring at HIE-ISOLDE technical design report’. Eur. Phys. J. Spec. Top., 207, 1–117. CrossRefGoogle Scholar
  20. Hanne, G. F.: 1988. ‘What really happens in the Franck-Hertz experiment with mercury?’ Am. J. Phys., 56, 696–700. CrossRefADSGoogle Scholar
  21. Herschbach, D. R.: 1987. ‘Molecular-dynamics of elementary chemical-reactions (Nobel lecture)’. Angew. Chem., Int. Ed., 26, 1221–1243. CrossRefGoogle Scholar
  22. Herschbach, D. R., Y. T. Lee and J. C. Polanyi: 1986. ‘The Nobel prize in chemistry: for their contributions concerning the dynamics of chemical elementary processes’, Stockholm. http://nobelprize.org/nobel_prizes/chemistry/laureates/1986/.
  23. Hoffmann, T. H., M. W. Ruf, H. Hotop, O. Zatsarinny, K. Bartschat and M. Allan: 2010. ‘New light on the Kr-(4p(5)5s(2)) Feshbach resonances: high-resolution electron scattering experiments and B-spline R-matrix calculations’. J. Phys. B, At. Mol. Phys., 43, 085206. CrossRefADSGoogle Scholar
  24. Hoshino, M. et al.: 2007. ‘Experimental and theoretical study of double-electron capture in collisions of slow C4+(1s 21S) with He(1s 21S)’. Phys. Rev. A, 75. Google Scholar
  25. Hotop, H., M. W. Ruf, M. Allan and I. Fabrikant: 2003. ‘Resonance and threshold phenomena in low-energy electron collisions with molecules and clusters’. In: ‘Advances in Atomic Molecular, and Optical Physics’, vol. 49, 85–216. Amsterdam: Elsevier, Academic Press. Google Scholar
  26. Kime, L. et al.: 2013. ‘High-flux monochromatic ion and electron beams based on laser-cooled atoms’. Phys. Rev. A, 88. Google Scholar
  27. Kimura, M. and N. F. Lane: 1989. ‘The low-energy, heavy-particle collisions – a close coupling treatment’. In: ‘Advances in Atomic Molecular and Optical Physics’, vol. 26, 79–160. New York: Academic Press. Google Scholar
  28. Kitajima, M. et al.: 2012. ‘Ultra-low-energy electron scattering cross section measurements of Ar, Kr and Xe employing the threshold photoelectron source’. Eur. Phys. J. D, 66, 130. CrossRefADSGoogle Scholar
  29. Knoop, S. et al.: 2008. ‘Single-electron capture in keV Ar15+⋯18++He collisions’. J. Phys. B, At. Mol. Phys., 41, 195203. CrossRefADSGoogle Scholar
  30. Koch, L., T. Heindorff and E. Reichert: 1984. ‘Resonances in the electron-impact excitation of metastable states of mercury’. Z. Phys. A, 316, 127–130. CrossRefADSGoogle Scholar
  31. Landau, L.: 1932. ‘Zur Theorie der Energieübertragung. II.’ Phys. Z. Sowjetunion, 2, 46–51. Google Scholar
  32. Magnier, S. and F. Masnou-Seeuws: 1996. ‘Model potential calculations for the excited and Rydberg states of the \(\mathrm{Na}_{2}^{+}\) molecular ion: Potential curves, dipole and quadrupole transition moments’. Mol. Phys., 89, 711–735. CrossRefADSGoogle Scholar
  33. Merabet, H. et al.: 2001. ‘Cross sections and collision dynamics of the excitation of (1snp) 1P0 levels of helium, n=2–5, by intermediate- and high-velocity electron, proton, and molecular-ion (\(\mathrm{H}_{2}^{+}\) and \(\mathrm{H}_{3}^{+}\)) impact’. Phys. Rev. A, 64, 012712. CrossRefADSGoogle Scholar
  34. Mikosch, J., U. Frühling, S. Trippel, D. Schwalm, M. Weidemüller and R. Wester: 2006. ‘Velocity map imaging of ion-molecule reactive scattering: The Ar++N2 charge transfer reaction’. Phys. Chem. Chem. Phys., 8, 2990–2999. CrossRefGoogle Scholar
  35. Mikosch, J. et al.: 2008. ‘Imaging nucleophilic substitution dynamics’. Science, 319, 183–186. CrossRefADSGoogle Scholar
  36. Morgenstern, R.: 2009. ‘Viewgraphs on the above barrier model’. Private communication, for which we wish to express our sincere thanks. Google Scholar
  37. Morgenstern, R. and H. Schmidt-Böcking: 2009. We grateful acknowledge detailed suggestions on collisions with highly charged ions. Google Scholar
  38. Newman, D. S., M. Zubek and G. C. King: 1985. ‘A study of resonance structure in mercury using metastable excitation by electron-impact with high-resolution’. J. Phys. B, At. Mol. Phys., 18, 985–998. CrossRefADSGoogle Scholar
  39. Niehaus, A.: 1986. ‘A classical model for multiple-electron capture in slow collisions of highly charged ions with atoms’. J. Phys. B, At. Mol. Phys., 19, 2925–2937. CrossRefADSGoogle Scholar
  40. NIFS and ORNL: 2007. ‘Atomic & molecular numerical databases’, NIFS, National Institute for Fusion Science, Japan. http://dbshino.nifs.ac.jp/, accessed: 9 Jan 2014.
  41. Pichl, L., R. Suzuki, M. Kimura, Y. Li, R. J. Buenker, M. Hoshino and Y. Yamazaki: 2006. ‘Angular dependence of double electron capture in collisions of C4+ with He – Stueckelberg oscillations in the differential cross-section for capture into C2+(1s 22s 21S)’. Eur. Phys. J. D, 38, 59–64. CrossRefADSGoogle Scholar
  42. Rapior, G., K. Sengstock and V. Baev: 2006. ‘New features of the Franck-Hertz experiment’. Am. J. Phys., 74, 423–428. CrossRefADSGoogle Scholar
  43. Rau, A. R. P.: 1971. ‘2 electrons in a Coulomb potential – double-continuum wave functions and threshold law for electron-atom ionization’. Phys. Rev. A, 4, 207–220. CrossRefADSGoogle Scholar
  44. Sadeghpour, H. R., J. L. Bohn, M. J. Cavagnero, B. D. Esry, I. I. Fabrikant, J. H. Macek and A. R. P. Rau: 2000. ‘Collisions near threshold in atomic and molecular physics’. J. Phys. B, At. Mol. Phys., 33, R93–R140. CrossRefADSGoogle Scholar
  45. Sigeneger, F., R. Winkler and R. E. Robson: 2003. ‘What really happens with the electron gas in the famous Franck-Hertz experiment?’. Contrib. Plasma Phys., 43, 178–197. CrossRefADSGoogle Scholar
  46. Smith, F. T.: 1969. ‘Diabatic and adiabatic representations for atomic collision problems’. Phys. Rev., 179, 111–123. CrossRefADSGoogle Scholar
  47. Stückelberg, E. C. G.: 1932. ‘Theorie der unelastischen Stösse zwischen Atomen’. Helv. Phys. Acta, 5, 369. Google Scholar
  48. Szmytkowski, C., K. Maciag and G. Karwasz: 1996. ‘Absolute electron-scattering total cross section measurements for noble gas atoms and diatomic molecules’. Phys. Scr., 54, 271–280. CrossRefADSGoogle Scholar
  49. Ullrich, J., R. Moshammer, A. Dorn, R. Dörner, L. P. H. Schmidt and H. Schmidt-Böcking: 2003. ‘Recoil-ion and electron momentum spectroscopy: reaction-microscopes’. Rep. Prog. Phys., 66, 1463–1545. CrossRefADSGoogle Scholar
  50. Vinodkumar, M., C. Limbachiya, B. Antony and K. N. Joshipura: 2007. ‘Calculations of elastic, ionization and total cross sections for inert gases upon electron impact: threshold to 2 keV’. J. Phys. B, At. Mol. Phys., 40, 3259–3271. CrossRefADSGoogle Scholar
  51. Wannier, G. H.: 1953. ‘The threshold law for single ionization of atoms or ions by electrons’. Phys. Rev., 90, 817–825. CrossRefzbMATHADSGoogle Scholar
  52. Wigner, E. P.: 1948. ‘On the behavior of cross sections near thresholds’. Phys. Rev., 73, 1002–1009. CrossRefzbMATHADSGoogle Scholar
  53. Winter, H. and F. Aumayr: 1999. ‘Hollow atoms’. J. Phys. B, At. Mol. Phys., 32, R39–R65. CrossRefADSGoogle Scholar
  54. Wittig, C.: 2005. ‘The Landau-Zener formula’. J. Phys. Chem. B, 109, 8428–8430. CrossRefGoogle Scholar
  55. Zatsarinny, O. and K. Bartschat: 2004. ‘B-spline Breit-Pauli R-matrix calculations for electron collisions with neon atoms’. J. Phys. B, At. Mol. Phys., 37, 2173–2189. CrossRefADSGoogle Scholar
  56. Zener, C.: 1932. ‘Non-adiabatic crossing of energy levels’. Proc. R. Soc. Lond. A, 137, 696–702. CrossRefADSGoogle Scholar
  57. Zewail, A. H.: 1999. ‘The Nobel prize in chemistry: for his studies of the transition states of chemical reactions using femtosecond spectroscopy’, Stockholm. http://nobelprize.org/nobel_prizes/chemistry/laureates/1999/.

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ingolf V. Hertel
    • 1
  • Claus-Peter Schulz
    • 1
  1. 1.Max-Born-Institut für Nichtlineare Optikund KurzzeitspektroskopieBerlinGermany

Personalised recommendations