Advertisement

Basics of Atomic Collision Physics: Elastic Processes

  • Ingolf V. Hertel
  • Claus-Peter Schulz
Part of the Graduate Texts in Physics book series (GTP)

Abstract

The subject of this and the following two chapters is collisions between electrons, atoms, ions and molecules. We mostly refer here to examples from the particularly productive pioneering period between 1965 and 1990. However, when appropriate, we mention already state-of-the-art research. In Sects. 6.1 and 6.2 we familiarize ourselves with cross sections, and how they are measured, with collision kinematics and its applications. As far as scattering theory is concerned we shall refrain from rigid derivations and prefer easy to understand models. In Sect. 6.3 we introduce elastic scattering and its classical theory while Sect. 6.4 outlines the quantum theory of elastic scattering. A first glimpse on resonances is given in Sects. 6.5 and 6.6 introduces Born approximation for elastic scattering. The two following chapters will go into more depth and treat in particular also inelastic processes. We thus recommend to the reader to study the present chapter with particular care.

Keywords

Elastic Scattering Impact Parameter Differential Cross Section Partial Wave Integral Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acronyms and Terminology

a.u.:

‘atomic units’, see Sect.  2.6.2 in Vol. 1.

CM:

‘Centre of mass’, coordinate system (or frame) (see Sect. 6.2.2).

CW:

‘Continuous wave’, (as opposed to pulsed) light beam, laser radiation etc.

DCS:

‘Differential cross section’, see Sect. 6.2.1.

FBA:

‘First order Born approximation’, approximation describing continuum wave functions by plane waves; used in collision theory and photoionization (see Sects. 6.6 and  5.5.2, Vol. 1, respectively).

FWHM:

‘Full width at half maximum’.

ICS:

‘Integral cross section’, see Chaps. 6 to  8.

JWKB:

Jeffreys-Wentzel-Kramers-Brillouin’, semiclassical method to determine scattering phases.

MOT:

‘Magneto optical trap’, for a typical setup see e.g. Fig. 6.26.

RMPS:

‘R-matrix with pseudo-states method’, advanced quantum mechanical theory for electron scattering.

SBA:

‘Second order Born approximation’, second order term in the Born series (see Sect. 6.6).

SEM:

‘Secondary electron multiplier’, see Appendix B.1.

Ti:Sapph:

‘Titanium-sapphire laser’, the ‘workhorse’ of ultra fast laser science.

WKB:

Wentzel, Kramers, and Brillouin’, semiclassical method to determine the evolution of the quantum mechanical phase of a wave function as a function of time; basically an approximative method to solve the Schrödinger equation, specifically for the motion of heavy particles.

References

  1. Adibzadeh, M. and C. E. Theodosiou: 2005. ‘Elastic electron scattering from inert-gas atoms’. At. Data Nucl. Data Tables, 91, 8–76. CrossRefADSGoogle Scholar
  2. Andrick, D. and A. Bitsch: 1975. ‘Experimental investigation and phase-shift analysis of low-energy electron-helium scattering’. J. Phys. B, At. Mol. Phys., 8, 393–410. CrossRefADSGoogle Scholar
  3. Andrick, D. and H. Ehrhardt: 1966. ‘Die Winkelabhängigkeit der Resonanzstreuung niederenergetischer Elektronen an He, Ne, Ar, und N2’. Z. Phys., 192, 99–106. CrossRefADSGoogle Scholar
  4. Baek, W. Y. and B. Grosswendt: 2003. ‘Total electron scattering cross sections of He, Ne and Ar, in the energy range 4 eV–2 keV’. J. Phys. B, At. Mol. Phys., 36, 731–753. CrossRefADSGoogle Scholar
  5. Bartschat, K.: 1998. ‘The R-matrix with pseudo-states method: Theory and applications to electron scattering and photoionization’. Comput. Phys. Commun., 114, 168–182. CrossRefzbMATHADSGoogle Scholar
  6. Bommels, J., K. Franz, T. H. Hoffmann, A. Gopalan, O. Zatsarinny, K. Bartschat, M. W. Ruf and H. Hotop: 2005. ‘Low-lying resonances in electron-neon scattering: Measurements at 4-meV resolution and comparison with theory’. Phys. Rev. A, 71. Google Scholar
  7. Bonham, R. A.: 1985. ‘Electron-atom elastic shadow scattering’. Phys. Rev. A, 31, 2706–2708. CrossRefADSGoogle Scholar
  8. Bonhommeau, D., N. Halberstadt and U. Buck: 2007. ‘Fragmentation of rare-gas clusters ionized by electron impact: new theoretical developments and comparison with experiments’. Int. Rev. Phys. Chem., 26, 353–390. CrossRefGoogle Scholar
  9. Born, M.: 1926a. ‘Quantenmechanik der Stoßvorgänge’. Z. Phys., 38, 803–840. CrossRefADSGoogle Scholar
  10. Born, M.: 1926b. ‘Zur Quantenmechanik der Stoßvorgänge’. Z. Phys., 37, 863–867. CrossRefzbMATHADSGoogle Scholar
  11. Born, M. and E. Wolf: 2006. Principles of Optics. Cambridge: Cambridge University Press, 7th (expanded) edn. Google Scholar
  12. Bransden, B. H. and C. J. Joachain: 2003. The Physics of Atoms and Molecules. New York: Prentice Hall Professional. Google Scholar
  13. Brauner, M., J. S. Briggs and H. Klar: 1989. ‘Triply-differential cross-sections for ionization of hydrogen-atoms by electrons and positrons’. J. Phys. B, At. Mol. Phys., 22, 2265–2287. CrossRefADSGoogle Scholar
  14. Breit, G. and E. Wigner: 1936. ‘Capture of slow neutrons’. Phys. Rev., 49, 0519–0531. CrossRefADSGoogle Scholar
  15. Buck, U., H. O. Hoppe, F. Huisken and H. Pauly: 1974. ‘Intermolecular potentials by inversion of molecular-beam scattering data. 4. Differential cross-sections and potential for LiHg’. J. Chem. Phys., 60, 4925–4929. CrossRefADSGoogle Scholar
  16. Buck, U., M. Kick and H. Pauly: 1972. ‘Determination of intermolecular potentials by inversion of molecular-beam scattering data. 3. High-resolution measurements and potentials for K-Hg and Cs-Hg’. J. Chem. Phys., 56, 3391–3397. CrossRefADSGoogle Scholar
  17. Buck, U., K. A. Kohler and H. Pauly: 1971. ‘Measurements of glory scattering of Na-Hg’. Z. Phys., 244, 180. CrossRefADSGoogle Scholar
  18. Buck, U. and H. Meyer: 1984. ‘Scattering analysis of cluster beams – formation and fragmentation of small Arn clusters’. Phys. Rev. Lett., 52, 109–112. CrossRefADSGoogle Scholar
  19. Buckman, S. J. and C. W. Clark: 1994. ‘Atomic negative-ion resonances’. Rev. Mod. Phys., 66, 539–655. CrossRefADSGoogle Scholar
  20. Burke, P.: 2006. ‘Electron-atom, electron-ion and electron-molecule collisions’. In: G. W. F. Drake, ed., ‘Handbook of Atomic, Molecular and Optical Physics’, 705–729. Heidelberg, New York: Springer. CrossRefGoogle Scholar
  21. Cohen, J. S.: 1978. ‘Rapid accurate calculation of JWKB phase-shifts’. J. Chem. Phys., 68, 1841–1843. CrossRefADSGoogle Scholar
  22. Farnik, M., C. Steinbach, M. Weimann, U. Buck, N. Borho and M. A. Suhm: 2004. ‘Size-selective vibrational spectroscopy of methyl glycolate clusters: comparison with ragout-jet FTIR spectroscopy’. Phys. Chem. Chem. Phys., 6, 4614–4620. CrossRefGoogle Scholar
  23. Feltgen, R., H. Kirst, K. A. Kohler, H. Pauly and F. Torello: 1982. ‘Unique determination of the He2 ground-state potential from experiment by use of a reliable potential model’. J. Chem. Phys., 76, 2360–2378. CrossRefADSGoogle Scholar
  24. Fluendy, M. A. D., R. M. Martin, E. E. Muschlitz Jr. and D. R. Herschbach: 1967. ‘Hydrogen atom scattering – velocity dependence of total cross section for scattering from rare gases hydrogen and hydrocarbons’. J. Chem. Phys., 46, 2172–2181. CrossRefADSGoogle Scholar
  25. Geiger, J. and D. Morón-León: 1979. ‘Electron-atom shadow scattering’. Phys. Rev. Lett., 42, 1336–1339. CrossRefADSGoogle Scholar
  26. Gengenbach, R., C. Hahn and J. P. Toennies: 1973. ‘Determination of H-He potential from molecular-beam experiments’. Phys. Rev. A, 7, 98–103. CrossRefADSGoogle Scholar
  27. Gopalan, A., J. Bommels, S. Gotte, A. Landwehr, K. Franz, M. W. Ruf, H. Hotop and K. Bartschat: 2003. ‘A novel electron scattering apparatus combining a laser photoelectron source and a triply differentially pumped supersonic beam target: characterization and results for the He(1s 2s2) resonance’. Eur. Phys. J. D, 22, 17–29. CrossRefADSGoogle Scholar
  28. Gulley, R. J., D. T. Alle, M. J. Brennan, M. J. Brunger and S. J. Buckman: 1994. ‘Differential and total electron-scattering from neon at low incident energies’. J. Phys. B, At. Mol. Phys., 27, 2593–2611. CrossRefADSGoogle Scholar
  29. Hofstädter, R.: 1961. ‘The Nobel prize in physics: for his pioneering studies of electron scattering in atomic nuclei and for his thereby achieved discoveries concerning the structure of the nucleons’, Stockholm. http://nobelprize.org/nobel_prizes/physics/laureates/1961/.
  30. Hotop, H., M. W. Ruf, M. Allan and I. Fabrikant: 2003. ‘Resonance and threshold phenomena in low-energy electron collisions with molecules and clusters’. In: ‘Advances in Atomic Molecular, and Optical Physics’, vol. 49, 85–216. Amsterdam: Elsevier, Academic Press. Google Scholar
  31. Levine, R. D.: 2005. Molecular Reaction Dynamics. Cambridge: Cambridge University Press, 554 pages. CrossRefGoogle Scholar
  32. OMalley, T. F., L. Spruch and L. Rosenberg: 1961. ‘Modification of effective range theory in presence of a long-range (r−4) potential’. J. Math. Phys., 2, 491–498. MathSciNetCrossRefADSGoogle Scholar
  33. Ovchinnikov, S. Y., G. N. Ogurtsov, J. H. Macek and Y. S. Gordeev: 2004. ‘Dynamics of ionization in atomic collisions’. Phys. Rep., 389, 119–159. CrossRefADSGoogle Scholar
  34. Pauly, H. and J. P. Toennies: 1965. ‘The study of intermolecular potentials with molecular beams at thermal energies’. In: ‘Adv. Atom. Mol. Phys.’, vol. 1, 195–344. New York: Academic Press. Google Scholar
  35. van der Poel, M., C. V. Nielsen, M. Rybaltover, S. E. Nielsen, M. Machholm and N. Andersen: 2002. ‘Atomic scattering in the diffraction limit: electron transfer in keV Li+-Na(3s, 3p) collisions’. J. Phys. B, At. Mol. Phys., 35, 4491–4505. CrossRefADSGoogle Scholar
  36. Poterya, V., M. Farnik, U. Buck, D. Bonhommeau and N. Halberstadt: 2009. ‘Fragmentation of size-selected Xe clusters: Why does the monomer ion channel dominate the Xen and Krn ionization?’ Int. J. Mass Spectrom., 280, 78–84. CrossRefADSGoogle Scholar
  37. Rakityansky, S. A. and N. Elander: 2009. ‘Generalized effective-range expansion’. J. Phys. A, Math. Gen., 42, 225302. MathSciNetCrossRefADSGoogle Scholar
  38. Schulz, G. J.: 1963. ‘Resonance in elastic scattering of electrons in helium’. Phys. Rev. Lett., 10, 104–105. CrossRefADSGoogle Scholar
  39. Smith, F. T., R. P. Marchi and K. G. Dedrick: 1966. ‘Impact expansions in classical and semiclassical scattering’. Phys. Rev., 150, 79–92. CrossRefADSGoogle Scholar
  40. Steinbach, C., M. Farnik, U. Buck, C. A. Brindle and K. C. Janda: 2006. ‘Electron impact fragmentation of size-selected krypton clusters’. J. Phys. Chem. A, 110, 9108–9115. CrossRefGoogle Scholar
  41. Szmytkowski, C., K. Maciag and G. Karwasz: 1996. ‘Absolute electron-scattering total cross section measurements for noble gas atoms and diatomic molecules’. Phys. Scr., 54, 271–280. CrossRefADSGoogle Scholar
  42. Toennies, J. P.: 2007. ‘Molecular low energy collisions: past, present and future’. Phys. Scr., 76, C15–C20. CrossRefADSGoogle Scholar
  43. Toennies, J. P., W. Welz and G. Wolf: 1976. ‘Determination of H-He potential well depth from low-energy elastic-scattering’. Chem. Phys. Lett., 44, 5–7. CrossRefADSGoogle Scholar
  44. Ullrich, J., R. Moshammer, A. Dorn, R. Dörner, L. P. H. Schmidt and H. Schmidt-Böcking: 2003. ‘Recoil-ion and electron momentum spectroscopy: reaction-microscopes’. Rep. Prog. Phys., 66, 1463–1545. CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ingolf V. Hertel
    • 1
  • Claus-Peter Schulz
    • 1
  1. 1.Max-Born-Institut für Nichtlineare Optikund KurzzeitspektroskopieBerlinGermany

Personalised recommendations