Molecular Spectroscopy

  • Ingolf V. Hertel
  • Claus-Peter Schulz
Part of the Graduate Texts in Physics book series (GTP)


After a brief introduction in Sect. 5.1 we shall expand our knowledge about rotational (microwave) and vibrational (infrared) spectroscopy in Sects. 5.2 and 5.3, respectively, and supplement it with short excursions into infrared Fourier transform spectroscopy (FTIR) and IR action spectroscopy. In Sect. 5.4 we turn to the spectroscopy of electronic transitions (VIS, UV and VUV) and present a few state-of-the-art methods of modern molecular spectroscopy. In Sect. 5.6 basics of Raman spectroscopy will be developed – a very important spectroscopic art, which may be said to reside in between electronic and vibrational spectroscopy. In Sect. 5.5.4 we illustrate the astonishing capabilities of today’s high resolution spectroscopy with sophisticated methods, as applied to larger, even biologically relevant molecules. Finally, in Sect. 5.8 we introduce the important field of photoelectron spectroscopy.


Surface Enhance Raman Spectroscopy Nuclear Spin Diatomic Molecule Laser Induce Fluorescence Electronic Ground State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Acronyms and Terminology


‘Acousto-optic modulator’, device to modulate and shift the frequency of light by diffraction in a Bragg grating generated by sound waves (usually RF).


‘Schematic geometry of a setup for nonlinear spectroscopy’, (see Fig. 5.42).


‘Coherent anti-Stokes Raman scattering’, coherent version of Raman scattering.


‘Charge coupled device’, semiconductor device typically used for digital imaging (e.g. in electronic cameras).


‘Coherent four wave mixing’, nonlinear optical processes (see Sect. 5.7.1).


‘Special kind of isomers (same atomic composition but different molecular structure) having the same sequence of atoms but different geometrical arrangement, such as cis-trans isomers or different alignment with respect to rotation around an axis’,


‘Common ordinary old Raman scattering’.


‘Cavity ring down’, spectrometer (see Sect. 5.5.3).


‘Coherent Stokes Raman scattering’, coherent version of Raman scattering.


‘Continuous wave’, (as opposed to pulsed) light beam, laser radiation etc.


‘(laser induced), dispersed fluorescence’.


‘Degenerate four wave mixing’, nonlinear optical process (see Sect. 5.7.1).


‘Deoxyribonucleic acid’, large nucleic acid which contains the genetic code according to which living organisms are build.


‘Electric dipole’, transitions induced by the interaction of an electric dipole with the electric field component of electromagnetic radiation.


‘Electron paramagnetic resonance’, spectroscopy, also called electron spin resonance ESR (see Sect.  9.5.2 in Vol. 1).


‘Electron spectroscopy for chemical analysis’, see Sect. 5.51.


‘electro spray ionization’, method for bringing very large molecular ions into the gas phase (see Sect. 5.28).


‘electrostatic units’, old system of unities, equivalent to the Gauss system for electric quantities (see Appendix A.3 in Vol. 1).


‘Extreme ultraviolet’, part of the UV spectral range. Wavelengths between \(10\operatorname{nm}\) and \(121\operatorname{nm}\) according to ISO 21348 (2007).


‘Extended X-ray absorption fine structure’, X-ray absorption by inner shell electrons in a broad energy range above the respective X-ray absorption edge (as opposed to NEXAFS).


Franck-Condon’, introduced an important approximation for optical transition between electronic states (see Sect. 5.4.1).


‘fluorescent-dip infrared spectroscopy’, (see Zwier 2001).


‘Femtosecond time resolved electron ion coincidence’, see Sect. 5.8.5.


‘Far infrared’, spectral range of electromagnetic radiation. Wavelengths between 3 μm and \(1\operatorname{mm}\) according to ISO 21348 (2007).


Fabry-Pérot interferometer’, for high precision spectroscopy and laser resonators (see Sect.  6.1.2 in Vol. 1).


Fourier transform’, see Appendix I in Vol. 1.


Fourier transform infrared spectroscopy’, see Sect. 5.3.2.


‘Full width at half maximum’.


‘Four wave mixing’, nonlinear optical processes (see Sect. 5.7.1).


‘Hyperfine structure’, splitting of atomic and molecular energy levels due to interactions of the active electron with the atomic nucleus (Chap.  9 in Vol. 1).


‘High harmonic generation’, in intense laser fields.


High-resolution transmission molecular absorption database’, (Rothman et al. 2009).


‘Infrared action spectroscopy’, special method to detect infrared absorption by particle detection (see Sect. 5.3.3).


‘Internal conversion’, radiationless transition between different electronic states (see Sect. 5.4.3).


‘Imaging photoelectron-photoion coincidence spectroscopy’, see also PEPICO, Sect. 5.8.5.


‘Infrared’, spectral range of electromagnetic radiation. Wavelengths between \(760\operatorname{nm}\) and \(1\operatorname{mm}\) according to ISO 21348 (2007).


‘Intersystem crossing’, radiationless transition between states with different total spin, typically between singlet and triplet states (see Chap. 5, Fig. 5.15).


‘Molecules with the same atomic composition but different molecular structure’,

isosceles triangle:

‘Triangle with two equal sides’, has two varieties: acute (all angles are <90) and obtuse (one angles is >90).


‘Molecules that differ only in their isotopic composition’,


‘Molecules with the same number of isotopes of each element but differ in their position within the molecule’,


‘Intra molecular vibrational energy redistribution’, excess vibrational energy in one mode of a polyatomic molecule is redistributed among other vibrational modes.


Jahn and Teller’, have first treated in 1937 the symmetry breaking effect, now referred to by their names.


Jahn-Teller effect’, symmetry breaking effect first treated by Jahn and Teller in 1937.


‘Kinetic energy analysis by time of flight’, method for determining fragmentation energies after dissociative ionization.


‘Laser induced fluorescence’, radiation emitted from a quantum system after excitation by laser radiation (see Sect. 5.5.1).


‘Magnetic dipole’, transitions induced by the interaction of a magnetic dipole with the magnetic field component of electromagnetic radiation.


‘Matrix assisted laser desorption ionization’, method for bringing very large molecular ions into the gas phase (see Sect. 5.28).


‘Mass analyzed threshold ionization’, see Sect. 5.8.3.


‘Molecular beam’.


‘Multi channel analyzer’, electronic device, storing pulses according to their pulse height (originally used in nuclear physics).


‘Multi channel plate’, electron multiplier with many amplifying elements.


‘Middle infrared’, spectral range of electromagnetic radiation. Wavelengths between 1.4 μm and 3 μm according to ISO 21348 (2007).


‘Molecular orbital’, single electron wave function in a molecule; typically the basis for a rigorous molecular structure calculation.


‘Multi reference configuration interaction’, high quality quantum chemical method for computing molecular potentials.


‘Microwave’, range of the electromagnetic spectrum. In spectroscopy MW usually refers to wavelengths from \(1\operatorname{mm}\) to \(1\operatorname{m}\) corresponding to frequencies between \(0.3\operatorname{GHz}\) to \(300\operatorname{GHz}\); ISO 21348 (2007) defines it as the wavelength range between \(1\operatorname{mm}\) to \(15\operatorname{mm}\).


‘Microwave Fourier transform’, spectrometer (see Sect. 5.2).


‘Near edge X-ray fine structure absorption, also XANES’, X-ray absorption by inner shell electrons close to the respective X-ray absorption edge.


‘Near infrared’, spectral range of electromagnetic radiation. Wavelengths between \(760\operatorname{nm}\) and 1.4 μm according to ISO 21348 (2007).


‘National institute of standards and technology’, located at Gaithersburg (MD) and Boulder (CO), USA.


‘Nuclear magnetic resonance’, spectroscopy, a rather universal spectroscopic method for identifying molecules (see Sect.  9.5.3 in Vol. 1).


‘Ordinary differential equation’.


‘Optical multichannel analyzer’, spectrometer which allows simultaneous registration of a whole spectrum.


‘Optical-optical double resonance’, spectroscopy with two photons, one kept fixed on a resonance transition, one tuning another part of the spectrum.


‘Photoelectron-photoion coincidence spectroscopy’, method to correlate a photoelectron with one specific fragment ion (see Sect. 5.8.5).


‘Photoelectron spectroscopy’, see Sect. 5.8.


‘Pulsed field ionization’, electrons are extracted from the ionization volume with some time delay.


‘Pseudo-Jahn-Teller effect’, vibronic coupling for nearly degenerate molecular states, leading to symmetry breaking.


‘also RTPI, resonantly enhanced two-photon ionization spectroscopy’, special version of REMPI.


‘Resonantly enhanced multi-photon ionization’, ionization of atoms or molecules by several photons with one resonant intermediate state.


‘Radio frequency’, range of the electromagnetic spectrum. Technically, one includes frequencies from \(3\operatorname{kHz}\) up to \(300\operatorname{GHz}\) or wavelengths from \(100\operatorname{km}\) to \(1\operatorname{mm}\); ISO 21348 (2007) defines the RF wavelengths from \(100\operatorname{m}\) to \(0.1\operatorname{mm}\); in spectroscopy RF usually refers to \(100\operatorname{kHz}\) up to some \(\operatorname{GHz}\).


‘Resonant ion dip infrared spectroscopy’, (see Zwier 2001).


‘also R2PI, resonantly enhanced two-photon ionization spectroscopy’, special version of REMPI.


‘Secondary electron multiplier’, see Appendix B.1.


‘Stimulated emission pumping’, special kind of two colour resonant four wave mixing (see TC-RFWM).


‘Surface enhanced Raman spectroscopy’.


‘Système international d’unités’, international system of units (m, kg, s, A, K, mol, cd), for details see the website of the Bureau International des Poids et Mésure or NIST


‘Time to amplitude converter’, electronic device, same as time to height converter.


‘Special isomers which readily interconvert by moving single atoms (e.g. H) or atomic groups’,


‘Two colour resonant four wave mixing’, nonlinear optical process (see Sect. 5.7.1).


‘Time to digital converter’, electronic device.


‘Time of flight’, measurement to determine velocities of charged particles, and consequently their energies (if the mass to charge ratio is known) or their mass to charge ratio (if their energy is known).


‘Threshold photoelectron-photoion coincidence spectroscopy’, method to correlate photoelectrons of nearly zero kinetic energy with one specific fragment ion (see Sect. 5.8.5).


‘Threshold photoelectron spectroscopy’, PES of only those electrons which are emitted with nearly vanishing kinetic energy, i.e. at threshold of the process studied.


‘Ultraviolet photoelectron spectroscopy’.


‘Ultraviolet’, spectral range of electromagnetic radiation. Wavelengths between \(100\operatorname{nm}\) and \(400\operatorname{nm}\) according to ISO 21348 (2007).


‘Visible’, spectral range of electromagnetic radiation. Wavelengths between \(380\operatorname{nm}\) and \(760\operatorname{nm}\) according to ISO 21348 (2007).


‘Velocity map imaging’, experimental method for registration (and visualization) of particle velocities as a function of their angular distribution (see Appendix B).


‘Vacuum ultraviolet’, spectral range of electromagnetic radiation. part of the UV spectral range. Wavelengths between \(10\operatorname{nm}\) and \(200\operatorname{nm}\) according to ISO 21348 (2007).


‘X-ray absorption near edge spectroscopy, also NEXAFS’, X-ray absorption by inner shell electrons close to the respective X-ray absorption edge.


‘X-ray absorption spectroscopy’, Used for to study the electronic states of inner shell electrons.


‘X-ray photoelectron spectroscopy’, see Sect. 5.8.1.


‘Soft x-ray (sometimes also extreme UV)’, spectral wavelength range between \(0.1\operatorname{nm}\) and \(10\operatorname{nm}\) according to ISO 21348 (2007), sometimes up to \(40\operatorname{nm}\).


‘Zero kinetic energy’, photoelectron spectroscopy (see Sect. 5.8.3).


  1. Abo-Riziq, A., B. Crews, L. Grace and M. S. de Vries: 2005. ‘Microhydration of guanine base pairs’. J. Am. Chem. Soc., 127, 2374–2375. Google Scholar
  2. Albrecht, A. C.: 1961. ‘Theory of Raman intensities’. J. Chem. Phys., 34, 1476–1484. ADSGoogle Scholar
  3. Andersen, U., H. Dreizler, J. U. Grabow and W. Stahl: 1990. ‘An automatic molecular-beam microwave Fourier-transform spectrometer’. Rev. Sci. Instrum., 61, 3694–3699. ADSGoogle Scholar
  4. Baer, T.: 1979. ‘State selection by photoion-photoelectron coincidence’. In: M. Bowers, ed., ‘Gas Phase Ion Chemistry’, vol. 1, Chap. 5. New York: Academic Press. Google Scholar
  5. Baer, T., W. B. Peatman and E. W. Schlag: 1969. ‘Photoionization resonance studies with a steradiancy analyzer. II. The photoionization of CH3I’. Chem. Phys. Lett., 4, 243–247. ADSGoogle Scholar
  6. Baer, T., S. H. Walker, N. S. Shuman and A. Bodi: 2012. ‘One- and two-dimensional translational energy distributions in the iodine-loss dissociation of 1,2-\(\mathrm{C}_{2}\mathrm {H}_{4}\mathrm{I}_{2}^{+}\) and 1,3-\(\mathrm{C}_{3}\mathrm{H}_{6}\mathrm{I}_{2}^{+}\): What does this mean?’ J. Phys. Chem. A, 116, 2833–2844. Google Scholar
  7. Baer, T., B. Sztaray, J. P. Kercher, A. F. Lago, A. Bodi, C. Skull and D. Palathinkal: 2005. ‘Threshold photoelectron photoion coincidence studies of parallel and sequential dissociation reactions’. Phys. Chem. Chem. Phys., 7, 1507–1513. Google Scholar
  8. Banna, M. S., B. H. McQuaide, R. Malutzki and V. Schmidt: 1986. ‘The photoelectron-spectrum of water in the 30–140 eV photon energy-range’. J. Chem. Phys., 84, 4739–4744. ADSGoogle Scholar
  9. Barrett, J. J. and N. I. Adams: 1968. ‘Laser-excited rotation-vibration Raman scattering in ultra-small gas samples’. J. Opt. Soc. Am., 58, 311–319. ADSGoogle Scholar
  10. Behringer, J. and o. Brandmüller: 1956. ‘Der Resonanz-Raman-Effekt’. Z. Elektrochem., 60, 643–679. Google Scholar
  11. Bendtsen, J. and F. Rasmussen: 2000. ‘High-resolution incoherent Fourier transform Raman spectrum of the fundamental band of N-14(2)’. J. Raman Spectrosc., 31, 433–438. ADSGoogle Scholar
  12. Berkowitz, J.: 1979. Photoabsorption, Photoionization and Photoelectron Spectroscopy. New York: Academic Press. Google Scholar
  13. Bersuker, I. B.: 2001. ‘Modern aspects of the Jahn-Teller effect theory and applications to molecular problems’. Chem. Rev., 101, 1067–1114. Google Scholar
  14. Birza, P., T. Motylewski, D. Khoroshev, A. Chirokolava H. Linnartz and J. P. Maier: 2002. ‘CW cavity ring down spectroscopy in a pulsed planar plasma expansion’. Chem. Phys., 283, 119–124. ADSGoogle Scholar
  15. Biswal, H. S., E. Gloaguen, Y. Loquais, B. Tardivel and M. Mons: 2012. ‘Strength of (NHS)-S-… hydrogen bonds in methionine residues revealed by gas-phase IR/UV spectroscopy’. J. Phys. Chem. Lett., 3, 755–759. Google Scholar
  16. Bloembergen, N. and A. L. Shawlow: 1981. ‘The Nobel prize in physics “for their contribution to the development of laser spectroscopy” ’, Stockholm.
  17. Bodi, A., B. Sztaray, T. Baer, M. Johnson and T. Gerber: 2007. ‘Data acquisition schemes for continuous two-particle time-of-flight coincidence experiments’. Rev. Sci. Instrum., 78, 084102. ADSGoogle Scholar
  18. Bodi, A., M. Johnson, T. Gerber, Z. Gengeliczki, B. Sztaray and T. Baer: 2009. ‘Imaging photoelectron photoion coincidence spectroscopy with velocity focusing electron optics’. Rev. Sci. Instrum., 80, 034101. ADSGoogle Scholar
  19. Böhm, M., J. Tatchen, D. Krügler, K. Kleinermanns, M. G. D. Nix, T. A. LeGreve, T. S. Zwier and M. Schmitt: 2009. ‘High-resolution and dispersed fluorescence examination of vibronic bands of tryptamine: Spectroscopic signatures for La/Lb mixing near a conical intersection’. J. Phys. Chem. A, 113, 2456–2466. Google Scholar
  20. Bordé, C. J.: 1983. ‘Matrix equations and diagrams for laser spectroscopy’. In: F. T. Arecchi et al., eds., ‘Advances in Laser Spectroscopy’, 1. New York: Plenum Press. Google Scholar
  21. Boyd, R. W.: 1999. ‘Order-of-magnitude estimates of the nonlinear optical susceptibility’. J. Mod. Opt., 46, 367–378. ADSGoogle Scholar
  22. Boyd, R. W.: 2008. Nonlinear Optics. Burlington, San Diego, London: Academic Press, 3 edn., 640 pages. Google Scholar
  23. Brehm, B. and E. von Puttkamer: 1967. ‘Koinzidenzmessungen von Photoionen und Photoelektronen bei Methan’. Z. Naturforschg., A22, 8. ADSGoogle Scholar
  24. Broyer, M., G. Delacrétaz, P. Labastie, J. P. Wolf and L. Wöste: 1987. ‘Spectroscopy of vibrational ground-state levels of Na3’. J. Phys. Chem., 91, 2626–2630. Google Scholar
  25. Broyer, M., G. Delacrétaz, P. Labastie, R. L. Whetten, J. P. Wolf and L. Wöste: 1986. ‘Spectroscopy of Na3’. Z. Phys. D, 3, 131–136. ADSGoogle Scholar
  26. Castleman, A. W. and K. H. Bowen: 1996. ‘Clusters: Structure, energetics, and dynamics of intermediate states of matter’. J. Phys. Chem., 100, 12 911–12 944. Google Scholar
  27. Cha, C. Y., G. Ganteför and W. Eberhardt: 1992. ‘New experimental setup for photoelectron-spectroscopy on cluster anions’. Rev. Sci. Instrum., 63, 5661–5666. ADSGoogle Scholar
  28. Chandrasekharan, V. and B. Silvi: 1981. ‘Transition polarizabilities and Raman intensities of hydrogenic systems’. J. Phys. B, At. Mol. Phys., 14, 4327–4333. ADSGoogle Scholar
  29. Chantler, C. T., K. Olsen, R. A. Dragoset, J. Chang, A. R. Kishore, S. A. Kotochigova and D. S. Zucker: 2005. ‘X-ray form factor, attenuation, and scattering tables (version 2.1)’, NIST., accessed: 7 Jan 2014.
  30. Chase, D. B. and J. F. Rabolt: 1994. Fourier Transform Raman Spectroscopy: From Concept to Experiment. New York: Academic Press. Google Scholar
  31. Condon, E. U.: 1928. ‘Nuclear motions associated with electron transitions in diatomic molecules’. Phys. Rev., 32, 0858–0872. ADSGoogle Scholar
  32. Couto, H., A. Mocellin, C. D. Moreira, M. P. Gomes, A. N. de Brito and M. C. A. Lopes: 2006. ‘Threshold photoelectron spectroscopy of ozone’. J. Chem. Phys., 124, 204311. ADSGoogle Scholar
  33. Curry, J., L. Herzberg and G. Herzberg: 1933. ‘Spektroskopischer Nachweis und Struktur des PN-Moleküls’. Z. Phys., 86, 348–366. ADSGoogle Scholar
  34. Cvejanov, S. and F. H. Read: 1974. ‘Studies of threshold electron-impact ionization of helium’. J. Phys. B, At. Mol. Phys., 7, 1841–1852. ADSGoogle Scholar
  35. Danby, C. J. and J. H. D. Eland: 1972. ‘Photoelectron-photoion coincidence spectroscopy: II. Design and performance of a practical instrument’. Int. J. Mass Spectrom. Ion Phys., 8, 153–161. Google Scholar
  36. Delacrétaz, G., E. R. Grant, R. L. Whetten, L. Wöste and J. W. Zwanziger: 1986. ‘Fractional quantization of molecular pseudorotation in Na3’. Phys. Rev. Lett., 56, 2598–2601. ADSGoogle Scholar
  37. Derro, E. L., C. Murray, T. D. Sechler and M. I. Lester: 2007. ‘Infrared action spectroscopy and dissociation dynamics of the HOOO radical’. J. Phys. Chem. A, 111, 11 592–11 601. Google Scholar
  38. Derro, E. L., T. D. Sechler, C. Murray and M. I. Lester: 2008. ‘Infrared action spectroscopy of the OD stretch fundamental and overtone transitions of the DOOO radical’. J. Phys. Chem. A, 112, 9269–9276. Google Scholar
  39. Di Teodoro, F. and E. F. McCormack: 1999. ‘The effect of laser bandwidth on the signal detected in two-color, resonant four-wave mixing spectroscopy’. J. Chem. Phys., 110, 8369–8383. ADSGoogle Scholar
  40. Druet, S. A. J. and J. P. E. Taran: 1981. ‘Cars spectroscopy’. Prog. Quantum Electron., 7, 1–72. ADSGoogle Scholar
  41. Eland, J. H. D.: 1972. ‘Photoelectron-photoion coincidence spectroscopy – I. Basic principles and theory’. Int. J. Mass Spectrom. Ion Phys., 8, 143–151. Google Scholar
  42. Eland, J. H. D.: 2009. ‘Dynamics of double photoionization in molecules and atoms’. In: S. Rice, ed., ‘Adv. Chem. Phys.’, vol. 141, 103–151. Berlin: Wiley. Google Scholar
  43. Elliott, B. M., L. R. McCunn and M. A. Johnson: 2008. ‘Photoelectron imaging study of vibrationally mediated electron autodetachment in the type I isomer of the water hexamer anion’. Chem. Phys. Lett., 467, 32–36. ADSGoogle Scholar
  44. Ervin, K. M. and W. C. Lineberger: 1992. ‘Photoelectron spectroscopy of negative ions’. In: N. Adams and L. Babcock, eds., ‘Advances in Gas Phase Ion Chemistry’, 121–166. Greenwich: JAI Press. Google Scholar
  45. Farmanara, P., W. Radloff, V. Stert, H.-H. Ritze and I. V. Hertel: 1999. ‘Real-time observation of hydrogen transfer: Femtosecond time-resolved photoelectron spectroscopy in excited ammonia dimer’. J. Chem. Phys., 111, 633–642. ADSGoogle Scholar
  46. Fenn, J. B.: 2002. ‘Nobel lecture: Electrospray wings for molecular elephants’, Stockholm.
  47. Franck, J.: 1926. ‘Elementary processes of photochemical reactions’. Trans. Faraday Soc., 21, 0536–0542. Google Scholar
  48. GATS: 2012. ‘High resolution spectral modelling’, Newport News, VA: GATS Inc. – Atmospheric Science., accessed: 9 Jan 2014.
  49. Gaussian: 2013. ‘Gaussian 09 rev. D’, Gaussian, Inc., Wallingford, CT, USA., accessed: 9 Jan 2014.
  50. Gelius, U., E. Basilier, S. Svensson, T. Bergmark and K. Siegbahn: 1974. ‘A high resolution ESCA instrument with X-ray monochromator for gases and fluids’. J. Electron Spectrosc., 2, 405–434. Google Scholar
  51. Godehusen, K.: 2004. Private Communication. Google Scholar
  52. Göppert-Mayer, M.: 1931. ‘Über Elementarakte mit zwei Quantensprüngen’. Ann. Phys. Berlin, 9, 273–294. Google Scholar
  53. Grabow, J. U., W. Stahl and H. Dreizler: 1996. ‘A multioctave coaxially oriented beam-resonator arrangement Fourier-transform microwave spectrometer’. Rev. Sci. Instrum., 67, 4072–4084. ADSGoogle Scholar
  54. Greer, J. C., W. Gotzeina, W. Kamke, H. Holland and I. V. Hertel: 1990. ‘TPEPICO observation of the threshold region of N2O clusters’. Chem. Phys. Lett., 168, 330–336. ADSGoogle Scholar
  55. Haugstätter, R., A. Goerke and I. V. Hertel: 1988. ‘Case studies in multi-photon ionization and dissociation of Na2 I. The (2) 1 σ u pathway’. Z. Phys. D, 9, 153–166. ADSGoogle Scholar
  56. Haugstätter, R., A. Goerke and I. V. Hertel: 1989. ‘Ionization and fragmentation of auto-ionizing Rydberg states in Na2’. Phys. Rev. A, 39, 5085–5091. ADSGoogle Scholar
  57. Haugstätter, R., A. Goerke and I. V. Hertel: 1990. ‘Case-studies in multi-photon ionization and dissociation of Na2 III. Dissociative ionization’. Z. Phys. D, 16, 61–70. ADSGoogle Scholar
  58. Hellweg, A.: 2008. ‘Inversion, internal rotation, and nitrogen nuclear quadrupole coupling of p-toluidine as obtained from microwave spectroscopy and ab initio calculations’. Chem. Phys., 344, 281–290. ADSGoogle Scholar
  59. Herzberg, G.: 1971. ‘Nobel lecture: Spectroscopic studies of molecular structure’, Stockholm: and Science 14 (1972) 123–138.
  60. Herzberg, G.: 1989. Molecular Spectra and Molecular Structure, vol. I. Diatomic Molecules. Malabar: Krieger Publishing Company, 660 pages. Google Scholar
  61. Hotop, H.: 2008. ‘Demonstration experiment in experimental physics at the Technical University Kaiserslautern’. We are grateful for the valuable material. Google Scholar
  62. Hotop, H. and W. C. Lineberger: 1985. ‘Binding-energies in atomic negative-ions 2’. J. Phys. Chem. Ref. Data, 14, 731–750. ADSGoogle Scholar
  63. ISO 21348: 2007. ‘Space environment (natural and artificial) – Process for determining solar irradiances’. International Organization for Standardization, Geneva, Switzerland. Google Scholar
  64. Jarvis, G. K., K. M. Weitzel, M. Malow, T. Baer, Y. Song and C. Y. Ng: 1999. ‘High-resolution pulsed field ionization photoelectron-photoion coincidence spectroscopy using synchrotron radiation’. Rev. Sci. Instrum., 70, 3892–3906. ADSGoogle Scholar
  65. Jochnowitz, E. B. and J. P. Maier: 2008. ‘Electronic spectroscopy of carbon chains’. Annu. Rev. Phys. Chem., 59, 519–544. ADSGoogle Scholar
  66. de Jong, W. A., L. Visscher and W. C. Nieuwpoort: 1997. ‘Relativistic and correlated calculations on the ground, excited, and ionized states of iodine’. J. Chem. Phys., 107, 9045–9058. Google Scholar
  67. Kamke, W., R. Herrmann, Z. Wang and I. V. Hertel: 1988. ‘On the photoionization and fragmentation of ammonia clusters using TPEPICO’. Z. Phys. D, 10, 491–497. ADSGoogle Scholar
  68. Kamke, W., J. de Vries, J. Krauss, E. Kaiser, B. Kamke, I. V. Hertel: 1989. ‘Photoionisation studies of homogeneous argon and krypton clusters using TPEPICO’. Z. Phys. D, 14, 339–351. ADSGoogle Scholar
  69. Keil, M., H. G. Kämer, A. Kudell, M. A. Baig, J. Zhu, W. Demtröder and W. Meyer: 2000. ‘Rovibrational structures of the pseudorotating lithium trimer 21Li3: Rotationally resolved spectroscopy and ab initio calculations of the a2 e′′←x2 e′ system’. J. Chem. Phys., 113, 7414–7431. ADSGoogle Scholar
  70. Kelly, M. A.: 2004. ‘The development of commercial ESCA instrumentation: A personal perspective’. J. Chem. Educ., 81, 1726–1733. Google Scholar
  71. Khoroshev, D., M. Araki, P. Kolek, P. Birza, A. Chirokolava and J. P. Maier: 2004. ‘Rotationally resolved electronic spectroscopy of a nonlinear carbon chain radical \(\mathrm{C}_{6}\mathrm{H}_{4}^{+}\)’. J. Mol. Spectrosc., 227, 81–89. ADSGoogle Scholar
  72. King, G. C., M. Zubek, P. M. Rutter and F. H. Read: 1987. ‘A high resolution threshold electron spectrometer for use in photoionisation studies’. J. Phys. E, Sci. Instrum., 20, 440–443. ADSGoogle Scholar
  73. Knight, P. L., M. A. Lauder and B. J. Dalton: 1990. ‘Laser-induced continuum structure’. Phys. Rep., 190, 1–61. ADSGoogle Scholar
  74. Krämer, H. G., M. Keil, C. B. Suarez, W. Demtröder and W. Meyer: 1999. ‘Vibrational structures in the A 2E′′←X 2E′ system of the lithium trimer: high-resolution spectroscopy and ab initio calculations’. Chem. Phys. Lett., 299, 212–220. ADSGoogle Scholar
  75. Lee, G. H., S. T. Arnold, J. G. Eaton, H. W. Sarkas, K. H. Bowen, C. Ludewigt and H. Haberland: 1991. ‘Negative-ion photoelectron-spectroscopy of solvated electron cluster anions, \((\mathrm{H}_{2}\mathrm{O})_{n}^{-}\) and \((\mathrm{NH}_{3})_{n}^{-}\)’. Z. Phys. D, 20, 9–12. ADSGoogle Scholar
  76. Lembach, G. and B. Brutschy: 1996. ‘Fragmentation energetics and dynamics of the neutral and ionized fluorobenzene⋅Ar cluster studied by mass analyzed threshold ionization spectroscopy’. J. Phys. Chem., 100, 19758–19763. Google Scholar
  77. Lineberger, W. C. and B. W. Woodward: 1970. ‘High resolution photodetachment of S near threshold’. Phys. Rev. Lett., 25, 424–427. ADSGoogle Scholar
  78. Markovich, G., S. Pollack, R. Giniger and O. Cheshnovsky: 1994. ‘Photoelectron-spectroscopy of Cl, Br, and I solvated in water clusters’. J. Chem. Phys., 101, 9344–9353. ADSGoogle Scholar
  79. Mazzotti, F. J., E. Achkasova, R. Chauhan, M. Tulej, P. P. Radi and J. P. Maier: 2008. ‘Electronic spectra of radicals in a supersonic slit-jet discharge by degenerate and two-color four-wave mixing’. Phys. Chem. Chem. Phys., 10, 136–141. Google Scholar
  80. McCarthy, M. C., V. Lattanzi, D. Kokkin, O. Martinez and J. F. Stanton: 2012. ‘On the molecular structure of HOOO’. J. Chem. Phys., 136, 034303. ADSGoogle Scholar
  81. Meerts, W. L. and M. Schmitt: 2006. ‘Application of genetic algorithms in automated assignments of high-resolution spectra’. Int. Rev. Phys. Chem., 25, 353–406. Google Scholar
  82. Müller-Dethlefs, K., M. Sander and E. W. Schlag: 1984. ‘A novel method capable of resolving rotational ionic states by the detection of threshold photoelectrons with a resolution of 1.2 cm−1’. Z. Naturforschg., A 39, 1089–1091. ADSGoogle Scholar
  83. Müller-Dethlefs, K. and E. W. Schlag: 1991. ‘High-resolution zero kinetic-energy (zeke) photoelectron-spectroscopy of molecular-systems’. Annu. Rev. Phys. Chem., 42, 109–136. ADSGoogle Scholar
  84. Müller-Dethlefs, K. and E. W. Schlag: 1998. ‘Chemical applications of zero kinetic energy (zeke) photoelectron spectroscopy’. Angew. Chem. Int. Ed., 37, 1346–1374. Google Scholar
  85. Murray, C., E. L. Derro, T. D. Sechler and M. I. Lester: 2007. ‘Stability of the hydrogen trioxy radical via infrared action spectroscopy’. J. Phys. Chem. A, 111, 4727–4730. Google Scholar
  86. Neumark, D. M.: 2001. ‘Time-resolved photoelectron spectroscopy of molecules and clusters’. Annu. Rev. Phys. Chem., 52, 255–277. ADSGoogle Scholar
  87. Neumark, D. M.: 2002. ‘Spectroscopy of reactive potential energy surfaces’. PhysChemComm, 5, 76–81. Google Scholar
  88. Powis, I., T. Baer and C. Y. Ng, eds.: 1995. High Resolution Laser Photoionization and Photoelectron Studies. Ion Chemistry and Physics. Chichester: Wiley. Google Scholar
  89. Raman, C. V.: 1930. ‘The Nobel prize in physics: for his work on the scattering of light and for the discovery of the effect named after him’, Stockholm.
  90. Reinert, F. and S. Hüfner: 2005. ‘Photoemission spectroscopy – from early days to recent applications’. New J. Phys., 7, 97., accessed: 9 Jan 2014. ADSGoogle Scholar
  91. Rienstra-Kiracofe, J. C., G. S. Tschumper, H. F. Schaefer, S. Nandi and G. B. Ellison: 2002. ‘Atomic and molecular electron affinities: Photoelectron experiments and theoretical computations’. Chem. Rev., 102, 231–282. Google Scholar
  92. Rizzo, T. R., J. A. Stearns and O. V. Boyarkin: 2009. ‘Spectroscopic studies of cold, gas-phase biomolecular ions’. Int. Rev. Phys. Chem., 28, 481–515. Google Scholar
  93. Rothman, L. S. et al.: 2009. ‘The HITRAN 2008 molecular spectroscopic database’. J. Quant. Spectrosc. Radiat. Transf., 110, 533–572. ADSGoogle Scholar
  94. Shen, Y. R.: 2003. The Principles of Nonlinear Spectroscopy. New York: Wiley, 563 pages. Google Scholar
  95. Sheps, L., E. M. Miller and W. C. Lineberger: 2009. ‘Photoelectron spectroscopy of small IBr(CO2)n, (n=0−3) cluster anions’. J. Chem. Phys., 131, 064304. ADSGoogle Scholar
  96. Siegbahn, K.: 1981. ‘Nobel lecture: Electron spectroscopy for atoms, molecules and condensed matter’, Stockholm. lecture.html.
  97. Slanger, T. G.: 1978. ‘Generation of \(\mathrm{O}_{2}(c\,{}^{1}\varSigma _{u}^{-}, c\,{}^{3}\Delta_{u}, a\,{}^{3}\varSigma_{u}^{+})\) from oxygen atom recombination’. J. Chem. Phys., 69, 4779–4791. ADSGoogle Scholar
  98. Stert, V., W. Radloff, C. P. Schulz and I. V. Hertel: 1999. ‘Ultrafast photoelectron spectroscopy: Femtosecond pump-probe coincidence detection of ammonia cluster ions and electrons’. Eur. Phys. J. D, 5, 97–106. ADSGoogle Scholar
  99. Stert, V., W. Radloff, T. Freudenberg, F. Noack, I. V. Hertel, C. Jouvet, C. Dedonder-Lardeux and D. Solgadi: 1997. ‘Femtosecond time-resolved photoelectron spectra of ammonia molecules and clusters’. Europhys. Lett., 40, 515–520. ADSGoogle Scholar
  100. Suma, K., Y. Sumiyoshi and Y. Endo: 2005. ‘The rotational spectrum and structure of the HOOO radical’. Science, 308, 1885–1886. ADSGoogle Scholar
  101. Sztaray, B. and T. Baer: 2003. ‘Suppression of hot electrons in threshold photoelectron photoion coincidence spectroscopy using velocity focusing optics’. Rev. Sci. Instrum., 74, 3763–3768. ADSGoogle Scholar
  102. Tanaka, K.: 2002. ‘Nobel lecture: The origin of macromolecule ionization by laser irradiation’, Stockholm.
  103. Taylor, K. J., C. L. Pettiette-Hall, O. Cheshnovsky and R. E. Smalley: 1992. ‘Ultraviolet photoelectron-spectra of coinage metal-clusters’. J. Chem. Phys., 96, 3319–3329. ADSGoogle Scholar
  104. Travnikova, O., K. J. Børveb, M. Patanena, J. Söderström, Miron Catalin, L. J. Sæthre, N. Martensson and S. Svensson: 2012. ‘The ESCA molecule – historical remarks and new results’. J. Electron Spectrosc., 185, 191–197. Google Scholar
  105. Trofimov, A. B., J. Schirmer, V. B. Kobychev, A. W. Potts, D. M. P. Holland and L. Karlsson: 2006. ‘Photoelectron spectra of the nucleobases cytosine, thymine and adenine’. J. Phys. B, At. Mol. Phys., 39, 305–329. ADSGoogle Scholar
  106. Truesdale, C. M., S. Southworth, P. H. Kobrin, D. W. Lindle, G. Thornton and D. A. Shirley: 1982. ‘Photo-electron angular-distributions of H2O’. J. Chem. Phys., 76, 860–865. ADSGoogle Scholar
  107. de Vries, M. S. and P. Hobza: 2007. ‘Gas-phase spectroscopy of biomolecular building blocks’. Annu. Rev. Phys. Chem., 58, 585–612. ADSGoogle Scholar
  108. Wassermann, T. N., O. V. Boyarkin, B. Paizs and T. R. Rizzo: 2012. ‘Conformation-specific spectroscopy of peptide fragment ions in a low-temperature ion trap’. J. Am. Soc. Mass Spectrom., 23, 1029–1045. ADSGoogle Scholar
  109. Weber, A., ed.: 1979. Raman Spectroscopy in Gases and Liquids, vol. 11 of Topics in Current Physics. Berlin, Heidelberg, New York: Springer. Google Scholar
  110. Werner, A. S. and T. Baer: 1975. ‘Absolute unimolecular decay-rates of energy selected \(\mathrm{C}_{4}\mathrm{H}_{6}^{+}\) metastable ions’. J. Chem. Phys., 62, 2900–2910. ADSGoogle Scholar
  111. Williams, S., E. A. Rohlfing, L. A. Rahn and R. N. Zare: 1997. ‘Two-color resonant four-wave mixing: Analytical expressions for signal intensity’. J. Chem. Phys., 106, 3090–3102. ADSGoogle Scholar
  112. Williams, S., J. D. Tobiason, J. R. Dunlop and E. A. Rohlfing: 1995. ‘Stimulated-emission pumping spectroscopy via 2-color resonant 4-wave-mixing’. J. Chem. Phys., 102, 8342–8358. ADSGoogle Scholar
  113. Williams, S., R. N. Zare and L. A. Rahn: 1994. ‘Reduction of degenerate 4-wave-mixing spectra to relative populations .1. Weak-field limit’. J. Chem. Phys., 101, 1072–1092. ADSGoogle Scholar
  114. Winter, B., R. Weber, W. Widdra, M. Dittmar, M. Faubel and I. V. Hertel: 2004. ‘Full valence band photoemission from liquid water using EUV synchrotron radiation’. J. Phys. Chem. A, 108, 2625–2632. Google Scholar
  115. Wrigge, G., M. A. Hoffmann, B. von Issendorff and H. Haberland: 2003. ‘Ultraviolet photoelectron spectroscopy of \(\mathrm{Nb}^{-}_{4}\) to \(\mathrm{Nb}^{-}_{200}\)’. Eur. Phys. J. D, 24, 23–26. ADSGoogle Scholar
  116. Wright, J. C., R. J. Carlson, G. B. Hurst, J. K. Steehler, M. T. Riebe, B. B. Price, D. C. Nguyen and S. H. Lee: 1991. ‘Molecular, multiresonant coherent 4-wave-mixing spectroscopy’. Int. Rev. Phys. Chem., 10, 349–390. Google Scholar
  117. Yang, S. H., C. L. Pettiette, J. Conceicao, O. Cheshnovsky and R. E. Smalley: 1987. ‘Ups of buckminsterfullerene and other large clusters of carbon’. Chem. Phys. Lett., 139, 233–238. ADSGoogle Scholar
  118. Yee, S. Y., T. K. Gustafson, S. A. J. Druet and J. P. E. Taran: 1977. ‘Diagrammatic evaluation of density operator for nonlinear optical calculations’. Opt. Commun., 23, 1–7. ADSGoogle Scholar
  119. Zhu, L. C. and P. Johnson: 1991. ‘Mass analyzed threshold ionization spectroscopy’. J. Chem. Phys., 94, 5769–5771. ADSGoogle Scholar
  120. Zwier, T. S.: 2001. ‘Laser spectroscopy of jet-cooled biomolecules and their water-containing clusters: Water bridges and molecular conformation’. J. Phys. Chem. A, 105, 8827–8839. Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ingolf V. Hertel
    • 1
  • Claus-Peter Schulz
    • 1
  1. 1.Max-Born-Institut für Nichtlineare Optikund KurzzeitspektroskopieBerlinGermany

Personalised recommendations