Optical Bloch Equations

  • Ingolf V. Hertel
  • Claus-Peter Schulz
Part of the Graduate Texts in Physics book series (GTP)


To set the stage, in Sect. 10.1 we take a look onto an experiment from modern quantum optics. In Sect. 10.2 the important “dressed state” model is introduced to analyze the two level system in a quasi-monochromatic light. Section 10.3 presents several characteristic experiments which may be explained effortless with this model. Section 10.4 derives the theoretical framework for treating such systems quantitatively, starting with the fundamental Liouville-von-Neumann equation from which the “Optical Bloch equations” are derived. In Sect. 10.5 we apply these to a number of important questions which in earlier chapters could only be discussed by hand waving arguments. On these grounds, Sect. 10.6 develops some basics of short pulse spectroscopy. Finally, Sect. 10.7 introduces a somewhat more complex application, the STIRAP method, today of increasing interest also in the context of “quantum information”.


Laser Field Rabi Frequency Rotate Wave Approximation Population Transfer Excitation Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Acronyms and Terminology


‘complex conjugate’.


‘Continuous wave’, (as opposed to pulsed) light beam, laser radiation etc.


‘Electric dipole’, transitions induced by the interaction of an electric dipole with the electric field component of electromagnetic radiation.


‘Electron paramagnetic resonance’, spectroscopy, also called electron spin resonance ESR (see Sect.  9.5.2 in Vol. 1).


‘Far-off-resonance optical dipole trap’, for trapping single atoms; a typical setup is shown in Fig. 10.1.


Fabry-Pérot interferometer’, for high precision spectroscopy and laser resonators (see Sect.  6.1.2 in Vol. 1).


‘Full width at half maximum’.


‘Hanbury Brown and Twiss’, experiment, to determine the lateral correlation of light by a second-order interferometric measurement (see Sect.  2.1.6).


‘Magneto optical trap’, for a typical setup see e.g. Fig.  6.26.


‘National institute of standards and technology’, located at Gaithersburg (MD) and Boulder (CO), USA.


‘Nuclear magnetic resonance’, spectroscopy, a rather universal spectroscopic method for identifying molecules (see Sect.  9.5.3 in Vol. 1).


‘Ordinary differential equation’.


‘Rotating wave approximation’, allows to solve the coupled equations for a two level system in a strong electromagnetic field in closed analytical form (see Sect. 10.2.3).


‘Stimulated Raman adiabatic passage’, special type of optical pumping, see Sect. 10.7.


‘Slowly varying envelope’, approximation for electromagnetic waves (see Sect.  1.2.1, specifically Eq. ( 1.38)).


‘Ultraviolet’, spectral range of electromagnetic radiation. Wavelengths between 100 nm and 400 nm according to ISO 21348 (2007).


‘Vacuum ultraviolet’, spectral range of electromagnetic radiation. part of the UV spectral range. Wavelengths between 10 nm and 200 nm according to ISO 21348 (2007).


  1. Allen, L. and J. H. Eberly: 1975. Optical Resonance and Two-Level Atoms. New York: Dover, 2nd edn., 233 pages. Google Scholar
  2. Ashkin, A.: 1978. ‘Trapping of atoms by resonance radiation pressure’. Phys. Rev. Lett., 40, 729–732. CrossRefADSGoogle Scholar
  3. Bergmann, K., H. Theuer and B. W. Shore: 1998. ‘Coherent population transfer among quantum states of atoms and molecules’. Rev. Mod. Phys., 70, 1003–1025. CrossRefADSGoogle Scholar
  4. Fewell, M. P., B. W. Shore and K. Bergmann: 1997. ‘Coherent population transfer among three states: Full algebraic solutions and the relevance of non adiabatic processes to transfer by delayed pulses’. Aust. J. Phys., 50, 281–308. CrossRefADSGoogle Scholar
  5. Freudenberg, T., W. Radloff, H. H. Ritze, V. Stert, K. Weyers, F. Noack and I. V. Hertel: 1996. ‘Ultrafast fragmentation and ionisation dynamics of ammonia clusters’. Z. Phys. D, 36, 349–364. CrossRefADSGoogle Scholar
  6. Gray, H. R. and C. R. Stroud: 1978. ‘Autler-Townes effect in double optical resonance’. Opt. Commun., 25, 359–362. CrossRefADSGoogle Scholar
  7. Grove, R. E., F. Y. Wu and S. Ezekiel: 1977. ‘Measurement of spectrum of resonance fluorescence from a 2-level atom in an intense monochromatic-field’. Phys. Rev. A, 15, 227–233. CrossRefADSGoogle Scholar
  8. Hartig, W., W. Rasmussen, R. Schieder and H. Walther: 1976. ‘Study of frequency-distribution of fluorescent light-induced by monochromatic radiation’. Z. Phys. A, 278, 205–210. CrossRefADSGoogle Scholar
  9. Hertel, I. V. and W. Radloff: 2006. ‘Ultrafast dynamics in isolated molecules and molecular clusters’. Rep. Prog. Phys., 69, 1897–2003. CrossRefADSGoogle Scholar
  10. ISO 21348: 2007. ‘Space environment (natural and artificial) – Process for determining solar irradiances’. International Organization for Standardization, Geneva, Switzerland. Google Scholar
  11. Lippert, H., V. Stert, L. Hesse, C. P. Schulz, I. V. Hertel and W. Radloff: 2003. ‘Analysis of hydrogen atom transfer in photoexcited indole(NH3)n clusters by femtosecond time-resolved photoelectron spectroscopy’. J. Phys. Chem. A, 107, 8239–8250. CrossRefGoogle Scholar
  12. Mollow, B. R.: 1975. ‘Pure-state analysis of resonant light-scattering – radiative damping, saturation, and multi-photon effects’. Phys. Rev. A, 12, 1919–1943. CrossRefADSGoogle Scholar
  13. Mollow, R. B.: 1969. ‘Power spectrum of light scattered by two-level systems’. Phys. Rev., 188, 1969–1975. CrossRefADSGoogle Scholar
  14. Piro, N. et al.: 2011. ‘Heralded single-photon absorption by a single atom’. Nat. Phys., 7, 17–20. CrossRefGoogle Scholar
  15. Rabi, I. I.: 1944. ‘The Nobel prize in physics: for his resonance method for recording the magnetic properties of atomic nuclei’, Stockholm.
  16. Schuda, F., C. R. Stroud and M. Hercher: 1974. ‘Observation of resonant stark effect at optical frequencies’. J. Phys. B, At. Mol. Phys., 7, L198–L202. CrossRefADSGoogle Scholar
  17. Stellmer, S., B. Pasquiou, R. Grimm and F. Schreck: 2012. ‘Creation of ultracold Sr2 molecules in the electronic ground state’. Phys. Rev. Lett., 109, 115302. CrossRefADSGoogle Scholar
  18. SWP 5.5: 2005. ‘Scientific work place’, Poulsbo, WA 98370-7370, USA: MacKichan Software, Inc., accessed: 9 Jan 2014.
  19. Tichy, M. C., F. Mintert and A. Buchleitner: 2011. ‘Essential entanglement for atomic and molecular physics’. J. Phys. B, At. Mol. Phys., 44, 192001. CrossRefADSGoogle Scholar
  20. Volz, J., M. Weber, D. Schlenk, W. Rosenfeld, C. Kurtsiefer and H. Weinfurter: 2007. ‘An atom and a photon’. Laser Phys., 17, 1007–1016. CrossRefADSGoogle Scholar
  21. Weber, M., J. Volz, K. Saucke, C. Kurtsiefer and H. Weinfurter: 2006. ‘Analysis of a single-atom dipole trap’. Phys. Rev. A, 73, 043406. CrossRefADSGoogle Scholar
  22. Weissbluth, M.: 1989. Photon-Atom Interactions. New York, London, Toronto, Sydney, San Francisco: Academic Press, 407 pages. Google Scholar
  23. Winkler, K., F. Lang, G. Thalhammer, P. von der Straten, R. Grimm and J. H. Denschlag: 2007. ‘Coherent optical transfer of Feshbach molecules to a lower vibrational state’. Phys. Rev. Lett., 98, 043201. CrossRefADSGoogle Scholar
  24. Ziegler, L. D.: 1985. ‘Rovibronic absorption analysis of the \(\tilde{A}\leftarrow \tilde{X}\) transition of ammonia’. J. Chem. Phys., 82, 664–669. CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ingolf V. Hertel
    • 1
  • Claus-Peter Schulz
    • 1
  1. 1.Max-Born-Institut für Nichtlineare Optikund KurzzeitspektroskopieBerlinGermany

Personalised recommendations