PET and SPECT Imaging of Neurotoxicity

  • Erik F. J. de Vries
  • Rudi A. J. O. Dierckx
  • Didima M. G. de Groot
Chapter

Abstract

From conception until death, we are exposed to neurotoxins that can potentially induce toxic encephalopathy. Neurotoxins can cause acute adverse effects or show delayed symptoms. They can even induce impaired brain development in the offspring of exposed pregnant females. Both in patients and in animals, it can be difficult to establish the effects of toxins on the (developing) brain. Functional imaging with positron emission tomography (PET) or single photon emission computed tomography (SPECT) could provide useful tools for preclinical testing of (developmental) neurotoxicity of potential toxic substances. These techniques could also aid clinicians in determining the damage that was done to brain functioning by exposure to a neurotoxin, and they may provide insight in the mechanisms that are involved in the intoxication. This book chapter reviews the potential applications of PET and SPECT imaging in (developmental) neurotoxicity testing and evaluation of functional deficits in the brain after exposure to neurotoxins.

Keywords

Positron Emission Tomography Single Photon Emission Compute Tomography Positron Emission Tomography Imaging Fetal Brain Single Photon Emission Compute Tomography Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

[11C]DOPA

L-[11C]-3,4-dihydroxyphenylalanine

[18F]FDG

2′-[18F]fluoro-2′-deoxyglucose

[18F]FDOPA

L-6-[18F]fluoro-3,4-dihydroxyphenylalanine

BBB

Blood–brain barrier

LPS

Lipopolysaccharide

MAM

methylazoxymethanol

MPTP

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MRI

Magnetic resonance imaging

PET

Positron emission tomography

SPECT

Single photon emission computed tomography

References

  1. Airas L, Paavilainen T, Marttila RJ, Rinne J (2008) Methanol intoxication-induced nigrostriatal dysfunction detected using 6-[18F]fluoro-L-dopa PET. Neurotoxicology 29:671–674PubMedCrossRefGoogle Scholar
  2. Bartels AL (2011) Blood-brain barrier P-glycoprotein function in neurodegenerative disease. Curr Pharm Des 17:2771–2777PubMedCrossRefGoogle Scholar
  3. Bartlett RM, Murali D, Nickles RJ, Barnhart TE, Holden JE, DeJesus OT (2011) Assessment of fetal brain uptake of paraquat in utero using in vivo PET/CT imaging. Toxicol Sci 122:551–556PubMedCentralPubMedCrossRefGoogle Scholar
  4. Benveniste H, Fowler JS, Rooney WD, Moller DH, Backus WW, Warner DA, Carter P, King P, Scharf B, Alexoff DA, Ma Y, Vaska P, Schlyer D, Volkow ND (2003) Maternal-fetal in vivo imaging: a combined PET and MRI study. J Nucl Med 44:1522–1530PubMedGoogle Scholar
  5. Benveniste H, Fowler JS, Rooney W, Ding YS, Baumann AL, Moller DH, Du C, Backus W, Logan J, Carter P, Coplan JD, Biegon A, Rosenblum L, Scharf B, Gatley JS, Volkow ND (2005) Maternal and fetal 11C-cocaine uptake and kinetics measured in vivo by combined PET and MRI in pregnant nonhuman primates. J Nucl Med 46:312–320PubMedGoogle Scholar
  6. Benveniste H, Fowler JS, Rooney WD, Scharf BA, Backus WW, Izrailtyan I, Knudsen GM, Hasselbalch SG, Volkow ND (2010) Cocaine is pharmacologically active in the nonhuman primate fetal brain. Proc Natl Acad Sci U S A 107:1582–1587PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bondy SC, Campbell A (2005) Developmental neurotoxicology. J Neurosci Res 81:605–612PubMedCrossRefGoogle Scholar
  8. Buckingham-Howes S, Berger SS, Scaletti LA, Black MM (2013) Systematic review of prenatal cocaine exposure and adolescent development. Pediatrics 131:e1917–e1936PubMedCentralPubMedCrossRefGoogle Scholar
  9. Bull S (2006) Review of environmental chemicals and toxicity. Focus on neurological diseases. Health Protection Agency publication HPA-ChaPD-001. http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1194947320712
  10. Callender TJ, Morrow L, Subramanian K, Duhon D, Ristovv M (1993) Three-dimensional brain metabolic imaging in patients with toxic encephalopathy. Environ Res 60:295–319PubMedCrossRefGoogle Scholar
  11. Chung FS, Eyal S, Muzi M, Link JM, Mankoff DA, Kaddoumi A, O’Sullivan F, Hsiao P, Unadkat JD (2010) Positron emission tomography imaging of tissue P-glycoprotein activity during pregnancy in the non-human primate. Br J Pharmacol 159:394–404PubMedCentralPubMedCrossRefGoogle Scholar
  12. Coecke S, Eskes C, Gartlon J, Kinsner A, Price A, Van Vliet E, Prieto P, Boveri M, Bremer S, Adler S, Pellizzer C, Wendel A, Hartung T (2006) The value of alternative testing for neurotoxicity in the context of regulatory needs. Environ Toxicol Pharmacol 21:153–167PubMedCrossRefGoogle Scholar
  13. De Esch C, Slieker R, Wolterbeek A, Woutersen R, De Groot DM (2012) Zebrafish as potential model for developmental neurotoxicity testing: a mini review. Neurotoxicol Teratol 34:545–553PubMedCrossRefGoogle Scholar
  14. De Groot DM, Bos-Kuijpers MH, Kaufmann WS, Lammers JH, O’Callaghan JP, Pakkenberg B, Pelgrim MT, Waalkens-Berendsen ID, Waanders MM, Gundersen HJ (2005) Regulatory developmental neurotoxicity testing: a model study focussing on conventional neuropathology endpoints and other perspectives. Environ Toxicol Pharmacol 19:745–755PubMedCrossRefGoogle Scholar
  15. De Groot DM, Heerschap A, Krul C, Radonjic M, De Vries EF (2011) PET and MRI improve safety testing with far less animals (<50%). ALTEX 28:256Google Scholar
  16. De Groot DM, Bogaart M, Nederlof R, Slieker RC, Wolterbeek AP, Dierckx RA, Van Waarde A, De Vries EF (2012a) In vivo [18F]FDG microPET imaging in developmental neurotoxicity: a feasibility study in rat with ethanol. Reprod Toxicol 34:160–161CrossRefGoogle Scholar
  17. De Groot DM, Kuper CF, Radonjic M, Stierum R, Wolterbeek A, Heerschap A, Veltien A, Dierckx RA, De Vries EF (2012b) Imaging and omics in developing and juvenile rats after exposure to TBTO. Toxicol Lett 211:S155CrossRefGoogle Scholar
  18. De Groot MWGDM, Westerink RHS, Dingemans MML (2013) Don’t judge a neuron only by its cover: neuronal function in in vitro developmental neurotoxicity testing. Toxicol Sci 132(1):1–7PubMedCrossRefGoogle Scholar
  19. De Vries EFJ, Van Waarde A, Willemsen ATM, Dierckx RA, Wolterbeek A, Wesselius A, De Groot DMG (2008) Protection of the unborn child from harmful drugs: a role for PET? Eur J Nucl Med Mol Imaging 35(suppl 2):S141Google Scholar
  20. Edling C, Hellman B, Arvidson B, Andersson J, Hartvig P, Lilja A, Valind S, Långström B (1997a) Do organic solvents induce changes in the dopaminergic system? Positron emission tomography studies of occupationally exposed subjects. Int Arch Occup Environ Health 70:180–186PubMedCrossRefGoogle Scholar
  21. Edling C, Hellman B, Arvidson B, Johansson G, Andersson J, Hartvig P, Valind S, Långström B (1997b) Positron emission tomography studies of healthy volunteers—no effects on the dopamine terminals and synthesis after short-term exposure to toluene. Hum Exp Toxicol 16:171–176PubMedCrossRefGoogle Scholar
  22. Ek CJ, Dziegielewska KM, Habgood MD, Saunders NR (2012) Barriers in the developing brain and neurotoxicology. Neurotoxicology 33:586–604PubMedCrossRefGoogle Scholar
  23. Ekino S, Susa M, Ninomiya T, Imamura K, Kitamura T (2007) Minamata disease revisited: an update on the acute and chronic manifestations of methyl mercury poisoning. J Neurol Sci 262:131–144PubMedCrossRefGoogle Scholar
  24. Gómez-Sánchez R, Bravo-San Pedro JM, Niso-Santano M, Soler G, Fuentes JM, González-Polo RA (2010) The neuroprotective effect of talipexole from paraquat-induced cell death in dopaminergic neuronal cells. Neurotoxicology 31:701–708PubMedCrossRefGoogle Scholar
  25. Hagstadius S, Orbaek P, Risberg J, Lindgren M (1989) Regional cerebral blood flow at the time of diagnosis of chronic toxic encephalopathy induced by organic-solvent exposure and after the cessation of exposure. Scand J Work Environ Health 15:130–135PubMedCrossRefGoogle Scholar
  26. Hartvig P, Lindberg BS, Lilja A, Lundqvist H, Långström B, Rane A (1989) Positron emission tomography in studies on fetomaternal disposition of opioids. Dev Pharmacol Ther 12:74–80PubMedGoogle Scholar
  27. Haut MW, Leach S, Kuwabara H, Whyte S, Callahan T, Ducatman A, Lombardo LJ, Gupta N (2000) Verbal working memory and solvent exposure: a positron emission tomography study. Neuropsychology 14:551–558PubMedCrossRefGoogle Scholar
  28. Huang CC, Weng YH, Lu CS, Chu NS, Yen TC (2003) Dopamine transporter binding in chronic manganese intoxication. J Neurol 250:1335–1339PubMedCrossRefGoogle Scholar
  29. Kim JW, Kim Y, Cheong HK, Ito K (1998) Manganese induced parkinsonism: a case report. J Korean Med Sci 13:437–439PubMedCentralPubMedGoogle Scholar
  30. Kim Y, Kim JW, Ito K, Lim HS, Cheong HK, Kim JY, Shin YC, Kim KS, Moon Y (1999) Idiopathic parkinsonism with superimposed manganese exposure: utility of positron emission tomography. Neurotoxicology 20:249–252PubMedGoogle Scholar
  31. Kisby GE, Spencer PS (2011) Is neurodegenerative disease a long-latency response to early-life genotoxin exposure? Int J Environ Res Public Health 10:3889–3921CrossRefGoogle Scholar
  32. Lees-Haley PR, Williams CW (1997) Neurotoxicity of chronic low-dose exposure to organic solvents: a skeptical review. J Clin Psychol 53:699–712PubMedCrossRefGoogle Scholar
  33. Leslie EM, Deeley RG, Cole SP (2005) Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol 204:216–237PubMedCrossRefGoogle Scholar
  34. Liu CH, Lin KJ, Wang HM, Kuo HC, Chuang WL, Weng YH, Shih TS, Huang CC (2013) Brain fluorodeoxyglucose positron emission tomography (18FDG-PET) in patients with acute thallium intoxication. Clin Toxicol 51:167–173CrossRefGoogle Scholar
  35. Meyer-Baron M, Kim EA, Nuwayhid I, Ichihara G, Kang SK (2012) Occupational exposure to neurotoxic substances in Asian countries - challenges and approaches. Neurotoxicology 33:853–861PubMedCentralPubMedCrossRefGoogle Scholar
  36. Morrow LA, Callender T, Lottenberg S, Buchsbaum MS, Hodgson MJ, Robin N (1990) PET and neurobehavioral evidence of tetrabromoethane encephalopathy. J Neuropsychiatry Clin Neurosci 2:431–435PubMedGoogle Scholar
  37. Olanow CW, Good PF, Shinotoh H, Hewitt KA, Vingerhoets F, Snow BJ, Beal MF, Calne DB, Perl DP (1996) Manganese intoxication in the rhesus monkey: a clinical, imaging, pathologic, and biochemical study. Neurology 46:492–498PubMedCrossRefGoogle Scholar
  38. Organisation for Economic Co-operation and Development (OECD) (2007) OECD guidelines for the testing of chemicals, section 4: health effects test no.426: developmental neurotoxicity study. doi: 10.1787/9789264067394
  39. Prüss-Ustün A, Vickers C, Haefliger P, Bertollini R (2011) Knowns and unknowns on burden of disease due to chemicals: a systematic review. Environ Health 10:9PubMedCentralPubMedCrossRefGoogle Scholar
  40. Radonjic M, Cappaert NL, De Vries EF, De Esch CE, Kuper FC, Van Waarde A, Dierckx RA, Wadman WJ, Wolterbeek AP, Stierum RH, De Groot DM (2013) Delay and impairment in brain development and function in rat offspring after maternal exposure to methylmercury. Toxicol Sci 133:112–124PubMedCrossRefGoogle Scholar
  41. Rosenberg NL, Myers JA, Martin WR (1989) Cyanide-induced parkinsonism: clinical, MRI, and 6-fluorodopa PET studies. Neurology 39:142–144PubMedCrossRefGoogle Scholar
  42. Sarkar S, Schmued L (2010) Neurotoxicity of ecstasy (MDMA): an overview. Curr Pharm Biotechnol 11:460–469PubMedCrossRefGoogle Scholar
  43. Schiffer WK, Lee DE, Alexoff DL, Ferrieri R, Brodie JD, Dewey SL (2006) Metabolic correlates of toluene abuse: decline and recovery of function in adolescent animals. Psychopharmacology (Berl) 186:159–167CrossRefGoogle Scholar
  44. Schiffer WK, Mirrione MM, Dewey SL (2007) Optimizing experimental protocols for quantitative behavioral imaging with 18F-FDG in rodents. J Nucl Med 48:277–287PubMedGoogle Scholar
  45. Shinotoh H, Snow BJ, Hewitt KA, Pate BD, Doudet D, Nugent R, Perl DP, Olanow W, Calne DB (1995) MRI and PET studies of manganese-intoxicated monkeys. Neurology 45:1199–1204PubMedCrossRefGoogle Scholar
  46. Shinotoh H, Snow BJ, Chu NS, Huang CC, Lu CS, Lee C, Takahashi H, Calne DB (1997) Presynaptic and postsynaptic striatal dopaminergic function in patients with manganese intoxication: a positron emission tomography study. Neurology 48:1053–1056PubMedCrossRefGoogle Scholar
  47. Szólics M, Chaudhry M, Ljubisavljevic M, Corr P, Samir HA, Van Gorkom KN (2012) Neuroimaging findings in a case of fluoxetine overdose. J Neuroradiol 39:254–257PubMedCrossRefGoogle Scholar
  48. Tennekes HA, Sánchez-Bayo F (2013) The molecular basis of simple relationships between exposure concentration and toxic effects with time. Toxicology 309:39–51PubMedCrossRefGoogle Scholar
  49. US Environmental Protection Agency (US EPA) (1998) Health effect test guidelines OPPTS 870.6300 Developmental neurotoxicity study. Docket ID:EPA 712-C-98-239Google Scholar
  50. Uitti RJ, Rajput AH, Ashenhurst EM, Rozdilsky B (1985) Cyanide-induced parkinsonism: a clinicopathologic report. Neurology 35:921–925PubMedCrossRefGoogle Scholar
  51. Varney NR, Morrow LA, Pinkston JB, Wu JC (1998) PET scan findings in a patient with a remote history of exposure to organic solvents. Appl Neuropsychol 5:100–106PubMedCrossRefGoogle Scholar
  52. Visser I, Lavini C, Booij J, Reneman L, Majoie C, De Boer AG, Wekking EM, De Joode EA, Van der Laan G, Van Dijk FJ, Schene AH, Den Heeten GJ (2008) Cerebral impairment in chronic solvent-induced encephalopathy. Ann Neurol 63:572–580PubMedCrossRefGoogle Scholar
  53. Wang AG, Liu RS, Liu JH, Teng MM, Yen MY (1999) Positron emission tomography scan in cortical visual loss in patients with organophosphate intoxication. Ophthalmology 106:1287–1291PubMedCrossRefGoogle Scholar
  54. Wang JH, Scollard DA, Teng S, Reilly RM, Piquette-Miller M (2005) Detection of P-glycoprotein activity in endotoxemic rats by 99mTc-sestamibi imaging. J Nucl Med 46:1537–1545PubMedGoogle Scholar
  55. Wolters EC, Huang CC, Clark C, Peppard RF, Okada J, Chu NS, Adam MJ, Ruth TJ, Li D, Calne DB (1989) Positron emission tomography in manganese intoxication. Ann Neurol 26:647–651PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Erik F. J. de Vries
    • 1
  • Rudi A. J. O. Dierckx
    • 2
    • 3
  • Didima M. G. de Groot
    • 4
  1. 1.Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
  2. 2.Department of Nuclear Medicine and Molecular ImagingUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
  3. 3.Department of Radiology and Nuclear MedicineGhent UniversityGhentBelgium
  4. 4.Netherlands Organization for Applied Scientific Research (TNO)UtrechtsewegThe Netherlands

Personalised recommendations