Skip to main content

PET Reveals Pathophysiology in Ischemic Stroke

  • Chapter
  • First Online:
PET and SPECT in Neurology

Abstract

The concepts of pathophysiology of ischemic brain damage as the basis for therapeutic strategies are derived from results of experiments in animal models. For their transfer into clinical application, methods are required which permit repeated noninvasive quantitative determination of regional cerebral blood flow, oxygen consumption, and energy metabolism in patients after acute ischemic stroke. The method of choice for this purpose is still positron emission tomography (PET), which can be applied for high-resolution quantitative imaging of various parameters – cerebral blood flow, oxygen consumption, and glucose metabolism, but also of molecular events and of functional states – in humans as well as small animals. In this review, some examples of PET applications for translational research in stroke are described.

One successful application of PET concerned the transfer of the concept of the penumbra into the clinical management of acute ischemic stroke. Experiments in baboons and cats in the 1970s and 1980s defined blood flow values for functional disturbance and irreversible morphological damage, which could also be established by PET in patients with acute stroke. The progression of irreversible damage, the core of ischemia, into the functionally impaired area, the penumbra, could be followed in experimental models. Also, the potential for recovery of these areas with reperfusion within a critical time window was demonstrated in these models, a result which formed the basis for thrombolysis and other reperfusion therapies. In animal models, tracers for neuronal integrity were tested which are useful for early detection of irreversible tissue damage. These tracers can help in therapeutic decisions and in the prediction of malignant course after occlusion of large arteries. In the assessment of subacute and chronic pathophysiological changes after stroke, results from animal experiments indicated the importance of neuroinflammation, which can be visualized as microglia activation, for progression of damage into areas primarily not affected by ischemia and for prognosis of functional deficits. These inflammatory changes might play an important role in increased amyloid deposition and might therefore be involved in the development of poststroke dementia. PET can also help to prove experimental concepts for improving recovery, e.g., by demonstrating the effectiveness of repetitive transcranial magnetic stimulation for inhibiting contralateral overactivated cortex areas in rehabilitation therapy.

All these examples underline the role PET has played for translational research in stroke in the last 30 years. Its impact might even be increased by the advent of combined MR/PET equipment and the introduction of more sophisticated molecular tracers into clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman RH, Correia JA et al (1981) Positron imaging in ischemic stroke disease using compounds labeled with oxygen 15. Initial results of clinicophysiologic correlations. Arch Neurol 38(9):537–543

    Article  CAS  PubMed  Google Scholar 

  • Astrup J, Symon L et al (1977) Cortical evoked potential and extracellular K + and H + at critical levels of brain ischemia. Stroke 8(1):51–57

    Article  CAS  PubMed  Google Scholar 

  • Astrup J, Siesjö BK et al (1981) Thresholds in cerebral ischemia – the ischemic penumbra. Stroke 12(6):723–725

    Article  CAS  PubMed  Google Scholar 

  • Baird AE, Benfield A et al (1997) Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging. Ann Neurol 41(5):581–589

    Article  CAS  PubMed  Google Scholar 

  • Barber PA, Darby DG et al (1998) Prediction of stroke outcome with echoplanar perfusion-weighted and diffusion-weighted MRI. Neurology 51(2):418–426

    Article  CAS  PubMed  Google Scholar 

  • Baron JC (1999) Mapping the ischaemic penumbra with PET: implications for acute stroke treatment. Cerebrovasc Dis 9:193–201

    Article  CAS  PubMed  Google Scholar 

  • Baron JC, Bousser MG et al (1981a) Noninvasive tomographic study of cerebral blood flow and oxygen metabolism in vivo. Potentials, limitations, and clinical applications in cerebral ischemic disorders. Eur Neurol 20(3):273–284

    Article  CAS  PubMed  Google Scholar 

  • Baron JC, Bousser MG et al (1981b) Reversal of focal “misery-perfusion syndrome” by extra-intracranial arterial bypass in hemodynamic cerebral ischemia. A case study with 15 O positron emission tomography. Stroke 12(4):454–459

    Article  CAS  PubMed  Google Scholar 

  • Campbell BC, Christensen S et al (2011) Cerebral blood flow is the optimal CT perfusion parameter for assessing infarct core. Stroke 42(12):3435–3440

    Article  PubMed  Google Scholar 

  • Clarke DD, Sokoloff L (1999) Circulation and energy metabolism of the brain. In: Siegel G, Agranoff B, Albers RW, Fisher S (eds) Basic neurochemistry: molecular, cellular, and medical aspects, 6th edn. Lippincott-Raven, Philadelphia, pp 637–669

    Google Scholar 

  • Demerle-Pallardy C, Duverger D et al (1991) Peripheral type benzodiazepine binding sites following transient forebrain ischemia in the rat: effect of neuroprotective drugs. Brain Res 565(2):312–320

    Article  CAS  PubMed  Google Scholar 

  • Dohmen C, Bosche B et al (2003) Prediction of malignant course in MCA infarction by PET and microdialysis. Stroke 34(9):2152–2158

    Article  PubMed  Google Scholar 

  • Dohmen C, Sakowitz OW et al (2008) Spreading depolarizations occur in human ischemic stroke with high incidence. Ann Neurol 63(6):720–728

    Article  PubMed  Google Scholar 

  • Gerhard A, Schwarz J et al (2005) Evolution of microglial activation in patients after ischemic stroke: a 11CR-PK11195 PET study. Neuroimage 24(2):591–595

    Article  PubMed  Google Scholar 

  • Grotta JC, Alexandrov AV (1998) tPA-associated reperfusion after acute stroke demonstrated by SPECT. Stroke 29(2):429–432

    Article  CAS  PubMed  Google Scholar 

  • Guadagno JV, Warburton EA et al (2006) How affected is oxygen metabolism in DWI lesions?: a combined acute stroke PET-MR study. Neurology 67(5):824–829

    Article  CAS  PubMed  Google Scholar 

  • Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394

    Article  CAS  PubMed  Google Scholar 

  • Hata R, Mies G et al (1998) A reproducible model of middle cerebral artery occlusion in mice: hemodynamic, biochemical, and magnetic resonance imaging. J Cereb Blood Flow Metab 18(4):367–375

    Article  CAS  PubMed  Google Scholar 

  • Heiss WD (1992) Experimental evidence of ischemic thresholds and functional recovery. Stroke 23(11):1668–1672

    Article  CAS  PubMed  Google Scholar 

  • Heiss WD (2000) Ischemic penumbra: evidence from functional imaging in man. J Cereb Blood Flow Metab 20(9):1276–1293

    Article  CAS  PubMed  Google Scholar 

  • Heiss W-D (2009a) The potential of PET/MR for brain imaging. Eur J Nucl Med Mol Imag 36(Suppl 1):105–112

    Article  Google Scholar 

  • Heiss W-D (2009b) WSO Leadership in Stroke Medicine Award Lecture Vienna, September 26, 2008: functional imaging correlates to disturbance and recovery of language function. Int J Stroke 4:129–136

    Article  PubMed  Google Scholar 

  • Heiss WD, Rosner G (1983) Functional recovery of cortical neurons as related to degree and duration of ischemia. Ann Neurol 14(3):294–301

    Article  CAS  PubMed  Google Scholar 

  • Heiss WD, Turnheim M et al (1979) Coupling between neuronal activity and focal blood flow in experimental seizures. Electroencephalogr Clin Neurophysiol 47(4):396–403

    Article  CAS  PubMed  Google Scholar 

  • Heiss WD, Huber M et al (1992) Progressive derangement of periinfarct viable tissue in ischemic stroke. J Cereb Blood Flow Metab 12(2):193–203

    Article  CAS  PubMed  Google Scholar 

  • Heiss WD, Graf R et al (1997) Early detection of irreversibly damaged ischemic tissue by flumazenil positron emission tomography in cats. Stroke 28(10):2045–2051

    Article  CAS  PubMed  Google Scholar 

  • Heiss WD, Grond M et al (1998) Tissue at risk of infarction rescued by early reperfusion: a positron emission tomography study in systemic recombinant tissue plasminogen activator thrombolysis of acute stroke. J Cereb Blood Flow Metab 18(12):1298–1307

    Article  CAS  PubMed  Google Scholar 

  • Heiss WD, Kessler J et al (1999a) Differential capacity of left and right hemispheric areas for compensation of poststroke aphasia. Ann Neurol 45(4):430–438

    Article  CAS  PubMed  Google Scholar 

  • Heiss WD, Thiel A et al (1999b) Which targets are relevant for therapy of acute ischemic stroke? Stroke 30(7):1486–1489

    Article  CAS  PubMed  Google Scholar 

  • Heiss WD, Kracht L et al (2000) Early [11 C]Flumazenil/H 2 O positron emission tomography predicts irreversible ischemic cortical damage in stroke patients receiving acute thrombolytic therapy. Stroke 31(2):366–369

    Article  CAS  PubMed  Google Scholar 

  • Heiss WD, Sobesky J et al (2004) Probability of cortical infarction predicted by flumazenil binding and diffusion-weighted imaging signal intensity: a comparative positron emission tomography/magnetic resonance imaging study in early ischemic stroke. Stroke 35(8):1892–1898

    Article  PubMed  Google Scholar 

  • Heiss W-D, Radlinska B et al (2011) Is poststroke dementia related to amyloid deposition and microglia activation. Ann Neurol 70(Suppl):T1510

    Google Scholar 

  • Hernandez DA, Bokkers RP et al (2012) Pseudocontinuous arterial spin labeling quantifies relative cerebral blood flow in acute stroke. Stroke 43(3):753–758

    Article  PubMed Central  PubMed  Google Scholar 

  • Hossmann KA (1994) Viability thresholds and the penumbra of focal ischemia. Ann Neurol 36(4):557–565

    Article  CAS  PubMed  Google Scholar 

  • Hossmann KA (2006) Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol 26(7–8):1057–1083

    PubMed  Google Scholar 

  • Ingvar DH (1976) Functional landscapes of the dominant hemisphere. Brain Res 107(1):181–197

    Article  CAS  PubMed  Google Scholar 

  • Juttler E, Bosel J et al (2011) DESTINY II: DEcompressive Surgery for the Treatment of malignant INfarction of the middle cerebral arterY II. Int J Stroke 6(1):79–86

    Article  PubMed  Google Scholar 

  • Kane I, Carpenter T et al (2007) Comparison of 10 different magnetic resonance perfusion imaging processing methods in acute ischemic stroke: effect on lesion size, proportion of patients with diffusion/perfusion mismatch, clinical scores, and radiologic outcomes. Stroke 38(12): 3158–3164

    Article  PubMed  Google Scholar 

  • Kidwell CS, Alger JR et al (2003) Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke 34(11):2729–2735

    Article  PubMed  Google Scholar 

  • Laughlin SB, Attwell D (2001) The metabolic cost of neural information: from fly eye to mammalian cortex. In: Frackowiak RSJ, Magistretti PJ, Shulman RG, Altman JS, Adams M (eds) Neuroenergetics: relevance for functional brain imaging. HFSP – Workshop XI, Strasbourg, pp 54–64

    Google Scholar 

  • Lees KR, Bluhmki E et al (2010) Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet 375(9727):1695–1703

    Article  CAS  PubMed  Google Scholar 

  • Lenzi GL, Frackowiak RSJ et al (1982) Cerebral oxygen metabolism and blood flow in human cerebral ischemic infarction. J Cereb Blood Flow Metab 2:321–335

    Article  CAS  PubMed  Google Scholar 

  • Nakamura H, Strong AJ et al (2010) Spreading depolarizations cycle around and enlarge focal ischaemic brain lesions. Brain 133(Pt 7):1994–2006

    Article  PubMed Central  PubMed  Google Scholar 

  • Olivot JM, Albers GW (2011) Diffusion-perfusion MRI for triaging transient ischemic attack and acute cerebrovascular syndromes. Curr Opin Neurol 24(1):44–49

    Article  PubMed  Google Scholar 

  • Olivot JM, Mlynash M et al (2009) Optimal Tmax threshold for predicting penumbral tissue in acute stroke. Stroke 40(2):469–475

    Article  PubMed Central  PubMed  Google Scholar 

  • Ostergaard L (2005) Principles of cerebral perfusion imaging by bolus tracking. J Magn Reson Imaging 22(6):710–717

    Article  PubMed  Google Scholar 

  • Pakkenberg B, Gundersen HJ (1997) Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 384(2):312–320

    Article  CAS  PubMed  Google Scholar 

  • Phelps ME, Mazziotta JC (1985) Positron emission tomography: human brain function and biochemistry. Science 228:799–809

    Article  CAS  PubMed  Google Scholar 

  • Powers WJ, Grubb RL Jr et al (1985) Cerebral blood flow and cerebral metabolic rate of oxygen requirements for cerebral function and viability in humans. J Cereb Blood Flow Metab 5:600–608

    Article  CAS  PubMed  Google Scholar 

  • Radlinska BA, Ghinani SA et al (2009) Multimodal microglia imaging of fiber tracts in acute subcortical stroke. Ann Neurol 66(6):825–832

    Article  PubMed  Google Scholar 

  • Raichle ME (1998) Behind the scenes of functional brain imaging: a historical and physiological perspective. Proc Natl Acad Sci U S A 95(3):765–772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richter M, Miltner WH et al (2008) Association between therapy outcome and right-hemispheric activation in chronic aphasia. Brain 131(5):1391–1401

    Article  PubMed  Google Scholar 

  • Rojas S, Martin A et al (2007) Imaging brain inflammation with [(11)C]PK11195 by PET and induction of the peripheral-type benzodiazepine receptor after transient focal ischemia in rats. J Cereb Blood Flow Metab 27(12):1975–1986

    Article  CAS  PubMed  Google Scholar 

  • Saur D, Lange R et al (2006) Dynamics of language reorganization after stroke. Brain 129(6):1371–1384

    Article  PubMed  Google Scholar 

  • Sauter AW, Wehrl HF et al (2010) Combined PET/MRI: one step further in multimodality imaging. Trends Mol Med 16(11):508–515

    Article  PubMed  Google Scholar 

  • Schroeter M, Dennin MA et al (2009) Neuroinflammation extends brain tissue at risk to vital peri-infarct tissue: a double tracer [11C]PK11195- and [18F]FDG-PET study. J Cereb Blood Flow Metab 29(6):1216–1225

    Article  CAS  PubMed  Google Scholar 

  • Sobesky J, Weber OZ et al (2004) Which time-to-peak threshold best identifies penumbral flow? Stroke 35:2843–2847

    Article  CAS  PubMed  Google Scholar 

  • Sobesky J, Weber OZ et al (2005) Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke. Stroke 36(5):980–985

    Article  PubMed  Google Scholar 

  • Sokoloff L (1999) Energetics of functional activation in neural tissues. Neurochem Res 24(2):321–329

    Article  CAS  PubMed  Google Scholar 

  • Sokoloff L, Ingvar DH et al (1975) Influence of functional activity on local cerebral glucose utilization. Brain work. Munksgaard, Copenhagen, pp 385–388

    Google Scholar 

  • Takasawa M, Jones PS et al (2008) How reliable is perfusion MR in acute stroke? Validation and determination of the penumbra threshold against quantitative PET. Stroke 39(3):870–877

    Article  PubMed  Google Scholar 

  • Thiel A, Heiss WD (2011) Imaging of microglia activation in stroke. Stroke 42(2):507–512

    Article  PubMed  Google Scholar 

  • Thiel A, Habedank B et al (2006a) From the left to the right: how the brain compensates progressive loss of language function. Brain Lang 98:57–65

    Article  PubMed  Google Scholar 

  • Thiel A, Schumacher B et al (2006b) Direct demonstration of transcallosal disinhibition in language networks. J Cereb Blood Flow Metab 26(9):1122–1127

    PubMed  Google Scholar 

  • Thiel A, Radlinska BA et al (2010) The temporal dynamics of poststroke neuroinflammation: a longitudinal diffusion tensor imaging-guided PET study with 11C-PK11195 in acute subcortical stroke. J Nucl Med 51(9):1404–1412

    Article  CAS  PubMed  Google Scholar 

  • Weiduschat N, Thiel A et al (2011) Effects of repetitive transcranial magnetic stimulation in aphasic stroke: a randomized controlled pilot study. Stroke 42(2):409–415

    Article  PubMed  Google Scholar 

  • Weinstein JR, Koerner IP et al (2010) Microglia in ischemic brain injury. Futur Neurol 5(2):227–246

    Article  CAS  Google Scholar 

  • Whitehead SN, Cheng G et al (2007) Progressive increase in infarct size, neuroinflammation, and cognitive deficits in the presence of high levels of amyloid. Stroke 38(12):3245–3250

    Article  CAS  PubMed  Google Scholar 

  • Zaro-Weber O, Moeller-Hartmann W et al (2009) The performance of MRI-based cerebral blood flow measurements in acute and subacute stroke compared with 15O-water positron emission tomography: identification of penumbral flow. Stroke 40(7):2413–2421

    Article  PubMed  Google Scholar 

Download references

Disclosures

Wolf-Dieter Heiss was funded by the WDH Foundation and the Marga and Walter Boll Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolf-Dieter Heiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heiss, WD. (2014). PET Reveals Pathophysiology in Ischemic Stroke. In: Dierckx, R., Otte, A., de Vries, E., van Waarde, A., Leenders, K. (eds) PET and SPECT in Neurology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54307-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54307-4_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54306-7

  • Online ISBN: 978-3-642-54307-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics