Advertisement

Research Background of Total Synthesis of Natural Product Maoecrystal V and Its Family

  • Jianxian Gong
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Natural products refer to chemical components or metabolites produced by a living organism inside human beings and animals, plants, insects, marine lives and microorganisms (Xu et al Introduction to natural product chemistry, Science Press, Beijing, pp 1–98, 2006 [1]). Natural products are very important for drug discovery, because more than one third of the drugs in current clinical use come directly from natural products or derivatives developed with active ingredients of nature products as the lead compounds. China is famous for its massive land as well as its enrichment in natural product resources.

Keywords

Core Structure Oxidative Coupling Synthetic Strategy Total Synthesis Alder Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Xu R, Ye Y, Zhao W (2006) Introduction to natural product chemistry, 1st edn. Science Press, Beijing, pp 1–98Google Scholar
  2. 2.
    Wöhler F (1828) Ueber künstliche bildung des harnstoffe. Pogg Ann Phys Chem 12:253–256CrossRefGoogle Scholar
  3. 3.
    Suh EM, Kishi Y (1994) Synthesis of palytoxin from palytoxin carboxylic acid. J Am Chem Soc 116:11205–11206CrossRefGoogle Scholar
  4. 4.
    WikiPedia (2012) Vancomycin. http://www.wikipedia.org. Accessed 18 April, 2012
  5. 5.
    Levine DP (2006) Vancomycin: a history. Clin Infect Dis 42:S5–S12CrossRefGoogle Scholar
  6. 6.
    Griffith RS (1981) Introduction to vancomycin. Rev Infect Dis 3:200–204CrossRefGoogle Scholar
  7. 7.
    Xie J, Pierce JG, James RC et al (2011) A redesigned vancomycin engineered for dual D-Ala-D-Ala and D-Ala-D-Lac binding exhibits potent antimicrobial activity against vancomycin-resistant bacteria. J Am Chem Soc 133:13946–13949CrossRefGoogle Scholar
  8. 8.
    Breitmaier E (2006) Terpenes: flavors, fragrances, pharmaca, pheromones. Wiley, WeinheimCrossRefGoogle Scholar
  9. 9.
    Maimone TJ, Baran PS (2007) Modern synthetic efforts toward biologically active terpenes. Nat Chem Biol 3:396–407CrossRefGoogle Scholar
  10. 10.
    Streitwieser AH, Kosower EM (1992) Introduction to organic chemistry. MacMillan Publishing Company, New YorkGoogle Scholar
  11. 11.
    Ruzicka L (1953) The isoprene rule and the biogenesis of terpenic compounds. Experientia 9:357–367CrossRefGoogle Scholar
  12. 12.
    Fujita E, Node M (1984) Diterpenoids of rabdosia species. Prog Chem Org Nat Prod 46:77–157Google Scholar
  13. 13.
    Thurlow KJ (1998) Chemical nomenclature, 1st edn. Kluwer Academic Publisher, Norwell, pp P55–P101CrossRefGoogle Scholar
  14. 14.
    Dewick PM (1995) The biosynthesis of C5–C20 terpenoid compounds. Nat Prod Rep 12:507–534CrossRefGoogle Scholar
  15. 15.
    Wang L, Zhao WL, Yan JS et al (2007) Eriocalyxin B induces apoptosis of t(8;21) leukemia cells through NF-κB and MAPK signaling pathways and triggers degradation of AML1-ETO oncoprotein in a caspase-3-dependent manner. Cell Death Differ 14:306–317CrossRefGoogle Scholar
  16. 16.
    Sun HD, Xu Y, Jiang B (2001) Diterpenoids of Isodon species, 1st edn. Science Press, Beijing, pp p1–p122Google Scholar
  17. 17.
    Yu D, Wu Y (2005) Advances in natural product chemistry, 1st edn. Chemical Industry Press, Beijing, pp P1–P155Google Scholar
  18. 18.
    Sun HD, Li S (2012) Diterpenoids chemistry, 1st edn. Chemical Industry Press, Beijing, pp P1–P89Google Scholar
  19. 19.
    Li S-H, Wang J, Niu X-M et al (2004) Maoecrystal V, cytotoxic diterpenoid with a novel C19 skeleton from Isodon eriocalyx (Dunn.) Hara. Org Lett 6:4327–4330CrossRefGoogle Scholar
  20. 20.
    Sun H-D, Huang S-X, Han Q-B (2006) Diterpenoids from Isodon species and their biological activities. Nat Prod Rep 23:673–698CrossRefGoogle Scholar
  21. 21.
    Shen Y-H, Wen Z-Y, Xu G et al (2005) Cytotoxic ent-kaurane diterpenoids from Isodon eriocalyx. Chem Biodivers 2:1665–1672CrossRefGoogle Scholar
  22. 22.
    Gong J, Lin G, Li C-C et al (2009) Synthetic study toward the total synthesis of Maoecrystal V. Org Lett 11:4770–4773CrossRefGoogle Scholar
  23. 23.
    Baran PS, Richter JM (2004) Direct coupling of indoles with carbonyl compounds: short, enantioselective, gram-scale synthetic entry into the hapalindole and fischerindole alkaloid families. J Am Chem Soc 126:7450–7451CrossRefGoogle Scholar
  24. 24.
    Baran PS, Richter JM, Lin DW (2005) Direct coupling of pyrroles with carbonyl compounds: short enantioselective synthesis of (S)-ketorolac. Angew Chem Int Ed 44:609–612CrossRefGoogle Scholar
  25. 25.
    Demartino MP, Chen K, Baran PS (2008) Intermolecular enolate heterocoupling: scope, mechanism, and application. J Am Chem Soc 130:11546–11560CrossRefGoogle Scholar
  26. 26.
    Magdziak D, Meek SJ, Pettus TRR (2004) Cyclohexadienone ketals and quinols: four building blocks potentially useful for enantioselective synthesis. Chem Rev 104:1383–1430CrossRefGoogle Scholar
  27. 27.
    Pinhey JT (1991) Organolead(IV) tricarboxylates, new reagents for organic synthesis. Aust J Chem 44:1353–1382CrossRefGoogle Scholar
  28. 28.
    Nicolaou KC, Sun Y-P, Peng X-S et al (2008) Total synthesis of (+)-cortistatin A. Angew Chem Int Ed 47:7310–7313CrossRefGoogle Scholar
  29. 29.
    Ihara M, Makita K, Tokunaga Y et al (1994) Stereoselective formation of three carbon–carbon bonds by cascade reaction with enolate anion: synthesis of tricyclo [6.2.2.01,6] dodecane and tricyclo [5.3.1.03,8] undecane derivatives. J Org Chem 59:6008–6013CrossRefGoogle Scholar
  30. 30.
    Liu Z, Meinwald J (1996) 5-(trimethylstannyl)-2H-pyran-2-one and 3-(trimethylstannyl)-2H-pyran-2-one: new 2H-pyran-2-one synthons. J Org Chem 61:6693–6699CrossRefGoogle Scholar
  31. 31.
    Krawczuk PJ, Schone N, Baran PS (2009) A synthesis of the carbon skeleton of Maoecrystal V. Org Lett 11:4774–4776CrossRefGoogle Scholar
  32. 32.
    Peng F, Yu M, Danishefsky SJ (2009) Synthetic studies toward Maoecrystal V. Tetrahedron Lett 50:6586–6587CrossRefGoogle Scholar
  33. 33.
    Peng F, Danishefsky SJ (2011) Toward the total synthesis of Maoecrystal V: an intramolecular Diels–Alder route to the Maoecrystal V pentacyclic core with the appropriate relative stereochemistry. Tetrahedron Lett 52:2104–2106CrossRefGoogle Scholar
  34. 34.
    Nicolaou KC, Dong L, Deng L et al (2010) Synthesis of functionalized Maoecrystal V core structures. Chem Commun 46:70–72CrossRefGoogle Scholar
  35. 35.
    Dong L, Deng L, Lim YH et al (2011) Synthesis of an advanced Maoecrystal V core structure. Chem Eur J 17:5778–5781 S5778/5771–S5778/5740CrossRefGoogle Scholar
  36. 36.
    Singh V, Bhalerao P, Mobin SM (2010) A tandem oxidative dearomatization/intramolecular Diels-Alder reaction: a short and efficient entry into tricyclic system of Maoecrystal V. Tetrahedron Lett 51:3337–3339CrossRefGoogle Scholar
  37. 37.
    Lazarski KE, Hu DX, Stern CL et al (2010) A synthesis of the carbocyclic core of Maoecrystal V. Org Lett 12:3010–3013CrossRefGoogle Scholar
  38. 38.
    Baitinger I, Mayer P, Trauner D (2010) Toward the total synthesis of Maoecrystal V: establishment of contiguous quaternary stereocenters. Org Lett 12:5656–5659CrossRefGoogle Scholar
  39. 39.
    Gu Z, Zakarian A (2011) Studies toward the synthesis of Maoecrystal V. Org Lett 13:1080–1082CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate School (PKUSZ)ShenzhenPeople’s Republic of China

Personalised recommendations