Advertisement

Ballistisches Trauma und Verletzungen durch Explosionen

  • Kai-Uwe SchmittEmail author
  • Peter F. Niederer
  • Duane S. Cronin
  • Markus H. Muser
  • Felix Walz
Chapter
Part of the VDI-Buch book series (VDI-BUCH)

Zusammenfassung

Sowohl im militärischen wie auch im zivilen Umfeld kommt es zu Verletzungen durch Schüsse und Explosionen. Ein ballistisches Trauma beschreibt dabei die Interaktion zwischen einem Projektil und dem menschlichen Körper; penetrierende oder stumpfe Traumata können die Folge sein. Verletzungen durch Explosionen beziehen sich auf die Detonation eines Sprengsatzes und die nachfolgende komplexe Interaktion des Menschen mit der eigentlichen Detonationswelle, etwaigen Splittern des explodierenden Sprengsatzes und umherfliegender Gegenstände bzw. Trümmern. Die Abgrenzung zwischen ballistischem Trauma und Verletzungen durch Explosionen ist nicht immer ganz eindeutig, es bestehen gewisse Überlappungen. Verletzungen der unteren Extremitäten, des Thorax und des Kopfes treten beispielsweise häufig im Zuge von Explosionen auf, obschon auch andere Körperregionen betroffen sein können. Genauso können alle Körperregionen auch durch Schüsse verletzt werden, obschon hier Schutzausrüstungen zum Einsatz kommen, die sich vor allem auf lebenswichtige Organe wie Hirn, Herz oder Lunge konzentrieren. Forschungsschwerpunkte in diesen Bereichen sind u. a. Kopfverletzungen, der Schutz von Fahrzeuginsassen bei Explosionen und der Schutz von Kopf, Gesicht und Thorax vor Schussverletzungen sowie Verletzungen durch Splitter, wobei dies auch stumpfe Traumata umfasst, die trotz Tragen von Schutzausrüstung entstehen können (z. B. wenn die Schutzausrüstung von außen belastet wird).

Literatur

  1. 1.
    AAAM (2005) AIS 2005: The injury scale. In: Gennarelli T, Wodzin E (Hrsg) Association of Advancement of Automotive MedicineGoogle Scholar
  2. 2.
    Axelsson H, Yelverton JT (1994) Chest wall velocity as a predictor of non-auditory blast injury in a complex wave environment. 7th International Symposium of Weapons Traumatology and Wound Ballistics. St. Petersburg, RussiaGoogle Scholar
  3. 3.
    Baker W (1973) Explosions in air. University of Texas Press, USAGoogle Scholar
  4. 4.
    Bangash M (1993) Impact and explosion: structural analysis and design. Blackwell Scientific Publications, Great BritainGoogle Scholar
  5. 5.
    Bass C, Rafaels K, Salzar R (2006) Pulmonary injury risk assessment for short-duration blasts. Personal Armour Systems Symposium (PASS), LeedsGoogle Scholar
  6. 6.
    Bergeron D, Walker R, Coffey C (1998) Detonation of 100-gram anti-personnel mine surrogate charges in Sand, report number SR 668. Defence Research Establishment Suffield, CanadaGoogle Scholar
  7. 7.
    Bowen I, Fletcher E, Richmond D (1968) Estimate of man’s tolerance to the direct effects of air blast. Technical report, DASA-2113. Defense Atomic Support Agency, Department of Defence, Washington, D.C.Google Scholar
  8. 8.
    Bulson P (1997) Explosive loading of engineering structures. Taylor & Francis, New York.Google Scholar
  9. 9.
    Clemedson C (1956) Blast injury. Physiol Rev 36(3):336–54Google Scholar
  10. 10.
    Cooper G, Dudley H (1997) Scientific foundations of trauma. Butterworth-Heinemann Publ, OxfordGoogle Scholar
  11. 11.
    Coupland R (1993) War wounds of limbs – surgical management. Butterworth Heineman, OxfordGoogle Scholar
  12. 12.
    Coupland R, Korver A (1991) Injuries from antipersonnel mines: the experience of the international committee of the Red Cross. Br Med J 303:1509–1512CrossRefGoogle Scholar
  13. 13.
    Croft J, Longhurst D (2007) HOSDB Body Armour Standards for UK Police (2007) Part 2: ballistic resistance. Publication No. 39/07/B. http://www.bsst.de/content/PDF/39-07-B_-_HOSDB_Body_Armour1.pdf. Zugegriffen: 22. Sept. 2013.
  14. 14.
    Cronin DS, Williams KV, Bass CR, Magnan P, Dosquet F, Bergeron D, van Bree J (2003) Test methods for protective footwear against AP mine blast. NATO Joint AVT-HFM Symposium. KoblenzGoogle Scholar
  15. 15.
    Cronin DS, Greer A, Williams KV, Salisbury C (2004) Numerical modeling of blast trauma to the human torso. Personal Armour Systems Symposium (PASS). The HagueGoogle Scholar
  16. 16.
    Cronin DS, Williams KV, Salisbury C (2011) Development and evaluation of a physical surrogate leg to predict landmine injury. J Mil Med 176(12):1408–1416CrossRefGoogle Scholar
  17. 17.
    den Reijer P (1991) Impact on ceramic faced armour. PhD thesis, Technical University Delft, DelftGoogle Scholar
  18. 18.
    Dobratz B, Crawford P (1985) Properties of chemical explosives and explosives simulants. LLNL explosives handbook, UCRL-52997, Lawrence Livermore Laboratory, LivermoreGoogle Scholar
  19. 19.
    Fackler M (1987) What’s wrong with wound ballistics literature and why. US Army Medical Research and Development CommandGoogle Scholar
  20. 20.
    Fackler M, Malinowski J (1988) Ordnance gelatin for ballistic studies. Am J Forensic Med Pathol 9:218–219CrossRefGoogle Scholar
  21. 21.
    Flynn M (2009) State of the insurgency – trends, intentions and objectives. ISAF, AfghanistanGoogle Scholar
  22. 22.
    Gibbs T, Popolato A (1980) LASL explosive property data. University of California Press, CaliforniaGoogle Scholar
  23. 23.
    Glasner J (2007) The halifax explosion: surviving the blast that shook a nation. Altitude Pub, CanmoreGoogle Scholar
  24. 24.
    Gupta R, Przekwas A (2013) Mathematical models of blast induced TBI: current status, challenges and prospects. Front Neurol 4(59):1–12Google Scholar
  25. 25.
    Haladuick T, Cronin DS, Lockhart P, Singh D, Bouamoul A, Ouellet S, Dionne JP (2012) Head kinematics resulting from simulated blast loading scenarios. Personal Armour Systems Symposium (PASS), NurembergGoogle Scholar
  26. 26.
    Hetherington J, Smith P (1994) Blast and ballistic loading of structures. Butterworth-Heinemann, BurlingtonGoogle Scholar
  27. 27.
    Hyde D (1998) Microcomputer Programs CONWEP and FUNPRO, Applications of TM 5-855-1. Fundamentals of Protective Design for Conventional Weapons (User’s guide). Report ADA195867. Department of the Army, Waterways Experiment Station, Corps of Engineers, VicksburgGoogle Scholar
  28. 28.
    Jussila J (2004) Preparing ballistic gelatine – review and proposal for a standard method. Forensic Sci Int 141:91–98CrossRefGoogle Scholar
  29. 29.
    Kingery C, Bulmash G (1984) Airblast parameters from TNT spherical air burst and hemispherical surface burst, report ARBL-TR-02555, U.S. Army BRL, Aberdeen Proving GroundGoogle Scholar
  30. 30.
    Knudsen P (2010) NATO task group on behind armour blunt trauma (RTO-TR-HFM-024). Thoracic response to undefeated body armour, report RTO-TR-IST-999Google Scholar
  31. 31.
    Krug E (Ed) (2002) World report on violence and health, World Health Organization, Geneva. http://www.who.int/violence_injury_prevention/violence/en/. Zugegriffen: 22. Sept. 2013
  32. 32.
    Lockhart P, Cronin, DS (2013) Helmet foam evaluation to mitigate head response from primary blast exposure. Computer methods in biomechanics and biomedical engineering, Taylor and Francis. http://dx.doi.org/10.1080/10255842.2013.829460
  33. 33.
    Mahoney PF, Ryan J, Brooks A, Schwab CW (2005) Ballistic trauma: a practical guide, 2nd edn. SpringerGoogle Scholar
  34. 34.
    Makris A, Dionne JP, Mitric B (2004) Innovative protective helmet for chem-bio/blast threats. International Soldier Systems Conference (ISSC), BostonGoogle Scholar
  35. 35.
    Manseau J, Williams K, Dionne JP, Levine J (2006) Response of the Hybrid III dummy subjected to free-field blasts – focussing on tertiary blast injuries. MABS 2006Google Scholar
  36. 36.
    Marsh S (1980) LASL shock hugoniot data. University of California Press, CaliforniaGoogle Scholar
  37. 37.
    Mayorga M (1997) The pathology of primary blast overpressure injury. Toxicology 121(1):17–28CrossRefGoogle Scholar
  38. 38.
    Meyers M (1994) Dynamic behavior of materials. Wiley, TorontoCrossRefzbMATHGoogle Scholar
  39. 39.
    Molde A, Naevin J, Coupland R (2001) Care in the field for victims of weapons of war. International Committee of the Red Cross, GenevaGoogle Scholar
  40. 40.
    Nechaev E, Gritsanov A, Fomin N, Minnullin I (1995) Mine blast trauma – experience from the war in Afghanistan. Russian Ministry of Public Health and Medical Industry, Russian R.R. Vreden Research Institute of Traumatology, translated from Russian by the Council Communication, StockholmGoogle Scholar
  41. 41.
    Needham C, Weiss G, Przekwas A, Tan X, Merkle A, Iyer K (2013) Challenges in measuring and modeling whole body blast effects. http://ftp.rta.nato.int/public//PubFullText/RTO/MP/RTOMP-HFM-207///MP-HFM-207-12.doc. Zugegriffen: 20. Sept. 2013
  42. 42.
    Nelson M (1970) Underwater blast injury – a review of the literature. Report Number 646, Bureau of Medicine and Surgery, Navy Department. Research Work Unit MF099Google Scholar
  43. 43.
    Nerenberg J, Dionne JP, Makris A, Fisher G (2002) Evaluation of the ABS-LPU ensemble for compliance with U.S. Army Advanced Bomb Suit Program. UXO/Countermine Forum, OrlandoGoogle Scholar
  44. 44.
    NIJ (2008) National Institute of Justice NIJ Standard-0101.06 Ballistic Resistance of Body Armor. http://www.nij.gov/nij/pubs-sum/223054.htm. Zugegriffen: 20. Sept. 2013
  45. 45.
    Rafaels K, Bass C, Panzer M, Salzar R (2010) Pulmonary injury risk assessment for long-duration blasts: a meta-analysis. J Trauma 69(2):368–374CrossRefGoogle Scholar
  46. 46.
    Ritzel D, Parks SA, Roseveare J, Rude G, Sawyer T (2011) Experimental blast simulation for injury studies. HFM-207 NATO, HalifaxGoogle Scholar
  47. 47.
    Sellier K, Kneubuehl B (1994) Wound Ballistics and the scientific background. Elsevier, ISBN 0-444-81511-2Google Scholar
  48. 48.
    Singh D, Cronin DS, Lockhart P, Haladuick T, Bouamoul A, Dionne JP (2012) Evaluation of head response to blast using sagittal and transverse finite element head models. Personal Armour Systems Symposium (PASS), NurembergGoogle Scholar
  49. 49.
    Small Arms Survey (2012) Tracking national homicide rates: generating estimates using vital registration data, Armed Violence: Issue Brief, Number 1. http://www.smallarmssurvey.org/fileadmin/docs/G-Issue-briefs/SAS-AVD-IB1-tracking-homicide.pdf. Zugegriffen: 20. Sept. 2013
  50. 50.
    Small Arms Survey (2013a) Conflict armed violence, armed violence. http://www.smallarmssurvey.org/armed-violence/conflict-armed-violence.html. Zugegriffen: 20. Sept. 2013
  51. 51.
    Small Arms Survey (2013b) Indirect conflict deaths, armed violence. http://www.smallarmssurvey.org/armed-violence/conflict-armed-violence/indirect-conflict-deaths.html. Zugegriffen: 20. Sept. 2013
  52. 52.
    Stuhmiller J, Ho K, Vorst M, Dodd K, Fitzpatrick T, Mayorga M (1996) A model of blast overpressure injury to the lung. J Biomech 29:227–234CrossRefGoogle Scholar
  53. 53.
    Thom C, Cronin DS (2009) Shock wave amplification by fabric materials. Shock Waves 19(1):39–48CrossRefGoogle Scholar
  54. 54.
    US Department of the Army (1967) Explosives and demolitions. Headquarters Department of the Army, Washington, D.C., Field Manual 5–25Google Scholar
  55. 55.
    US Department of the Army (1990, Nov.) Structures to resist the effects of accidental explosions. Technical Manual 5-1300Google Scholar
  56. 56.
    Wightman J, Gladish S (2001) Explosions and blast injuries. Ann Emerg Med 37(6):664–78CrossRefGoogle Scholar
  57. 57.
    Wilbeck J (1978) Impact behavior of low strength projectiles, Air Force Materials Lab Wright-Patterson AFB OH, 7/1978Google Scholar
  58. 58.
    Wilkins M (1978) Mechanics of penetration and perforation. Int J Eng Sci 16:793–807CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Kai-Uwe Schmitt
    • 1
    Email author
  • Peter F. Niederer
    • 1
  • Duane S. Cronin
    • 2
  • Markus H. Muser
    • 3
  • Felix Walz
    • 3
  1. 1.Institut für biomedizinische TechnikUniversität und ETH ZürichZürichSchweiz
  2. 2.Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooCanada
  3. 3.AGU ZürichZürichSchweiz

Personalised recommendations