Advertisement

Adventitious Root Development in Ornamental Plants: Insights from Carnation Stem Cuttings

  • Antonio Cano
  • José Manuel Pérez-Pérez
  • Manuel Acosta
Chapter
Part of the Soil Biology book series (SOILBIOL, volume 40)

Abstract

Adventitious rooting is an important factor ensuring vegetative propagation of a number of plant species. Carnation is, after rose, the most important species on the worldwide market of cut flowers. Our current knowledge about adventitious rooting in carnation has gain insight from physiological studies, showing that root induction in the cutting is affected by complex interactions between sucrose and hormone levels, particularly auxin. However, the genetic determinants of the differences found in rooting performance between carnation cultivars are still unknown. We are developing new approaches to characterize in detail stem cutting morphology and adventitious root (AR) architecture in carnation cuttings. Recent developments in sequencing technologies allow genome-wide genetic variation discovery among landraces and cultivars, which can then be used for the discovery of trait-linked markers through genome-wide association (GWA) studies. The identification of the genes involved in AR formation in this species will help establishing a marker-assisted selection (MAS) approach to select for improved adventitious rooting performance in current carnation breeding programs.

Keywords

Quantitative Trait Locus Adventitious Root Jasmonic Acid Auxin Transport Stem Cutting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Work in the laboratory of J.M. Pérez-Pérez is supported by the Ministerio de Economía y Competitividad (MINECO) of Spain (grant no. AGL2012-33610) and by FEDER Funds of the European Commission. We are especially indebted to Emilio A. Cano (Barberet & Blanc, S.A.) for plant material and to E.A. Cano and Paul Passarinho (Genetwister Technologies, the Netherlands) for fruitful discussions and comments to the manuscript.

References

  1. Abu-Abied M, Szwerdszarf D, Mordehaev I, Levy A, Stelmakh OR, Belausov E, Yaniv Y, Uliel S, Katzenellenbogen M, Riov J, Ophir R, Sadot E (2012) Microarray analysis revealed upregulation of nitrate reductase in juvenile cuttings of Eucalyptus grandis, which correlated with increased nitric oxide production and adventitious root formation. Plant J 71:787–799PubMedCrossRefGoogle Scholar
  2. Acosta M, Oliveros-Valenzuela MR, Nicolás C, Sánchez-Bravo J (2009) Rooting of carnation cuttings: the auxin signal. Plant Signal Behav 4:234–236PubMedCentralPubMedCrossRefGoogle Scholar
  3. Agulló-Antón MA, Sánchez Bravo J, Acosta M, Druege U (2011) Auxins or sugars: what makes the difference in the adventitious rooting of stored carnation cuttings? J Plant Growth Regul 30:100–113CrossRefGoogle Scholar
  4. Agulló-Antón MÁ, Ferrández-Ayela A, Fernández-García N, Nicolás C, Albacete A, Pérez-Alfocea F, Sánchez-Bravo J, Pérez-Pérez JM, Acosta M (2014) Early steps of adventitious rooting: morphology, hormonal profiling and carbohydrate turnover in carnation stem cuttings. Physiol Plant 150(3):446–462. doi: 10.1111/ppl.12114 PubMedCrossRefGoogle Scholar
  5. Ahkami AH, Lischewski S, Haensch KT, Porfirova S, Hofmann J, Rolletschek H, Melzer M, Franken P, Hause B, Druege U, Hajirezaei MR (2009) Molecular physiology of adventitious root formation in Petunia hybrida cuttings: involvement of wound response and primary metabolism. New Phytol 181:613–625PubMedCrossRefGoogle Scholar
  6. Ahkami AH, Melzer M, Ghaffari MR, Pollmann S, GhorbaniJavid M, Shahinnia F, Hajirezaei MR, Druege U (2013) Distribution of indole-3-acetic acid in Petunia hybrida shoot tip cuttings and relationship between auxin transport, carbohydrate metabolism and adventitious root formation. Planta 238:499–517PubMedCentralPubMedCrossRefGoogle Scholar
  7. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827PubMedCrossRefGoogle Scholar
  8. Albacete A, Ghanem ME, Martinez-Andujar C, Acosta M, Sanchez-Bravo J, Martinez V, Lutts S, Dodd IC, Perez-Alfocea F (2008) Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 59:4119–4131PubMedCentralPubMedCrossRefGoogle Scholar
  9. Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S (2012) The path from beta-carotene to carlactone, a strigolactone-like plant hormone. Science 335:1348–1351PubMedCrossRefGoogle Scholar
  10. Armengaud P, Zambaux K, Hills A, Sulpice R, Pattison RJ, Blatt MR, Amtmann A (2009) EZ-rhizo: integrated software for the fast and accurate measurement of root system architecture. Plant J 57:945–956PubMedCrossRefGoogle Scholar
  11. Aswath C, Deepa SM, Choudhary ML (2003) Commercial multiplication of gerbera (Gerbera jamesonii Bolus) through in vitro shoot tip culture. J Ornam Hortic 6:303–309Google Scholar
  12. Bishopp A, Lehesranta S, Vaten A, Help H, El-Showk S, Scheres B, Helariutta K, Mahonen AP, Sakakibara H, Helariutta Y (2011) Phloem-transported cytokinin regulates polar auxin transport and maintains vascular pattern in the root meristem. Curr Biol 21:927–932PubMedCrossRefGoogle Scholar
  13. Blakesley D (1994) Auxin metabolism and adventitious root initiation. In: Davis TD, Haissig BE (eds) Biology of adventitious root formation. Plenum, New York, pp 143–154CrossRefGoogle Scholar
  14. Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Van Onckelen H, Van Montagu M, Inze D (1995) Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7:1405–1419PubMedCentralPubMedCrossRefGoogle Scholar
  15. Brinker M, van Zyl L, Liu W, Craig D, Sederoff RR, Clapham DH, von Arnold S (2004) Microarray analyses of gene expression during adventitious root development in Pinus contorta. Plant Physiol 135:1526–1539PubMedCentralPubMedCrossRefGoogle Scholar
  16. Caboni E, Tonelli MG, Lauri P, Iacovacci P, Kevers C, Damiano C, Gaspar T (1997) Biochemical aspects of almond microcuttings related to in vitro rooting ability. Biol Plant 39:91–97CrossRefGoogle Scholar
  17. Calamar A, De Klerk GJ (2002) Effect of sucrose on adventitious root regeneration in apple. Plant Cell Tissue Organ Cult 70:207–212CrossRefGoogle Scholar
  18. Cheong YH, Chang H-S, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677PubMedCentralPubMedCrossRefGoogle Scholar
  19. Correa LD, Paim DC, Schwambach J, Fett-Neto AG (2005) Carbohydrates as regulatory factors on the rooting of Eucalyptus saligna Smith and Eucalyptus globulus Labill. Plant Growth Regul 45:63–73CrossRefGoogle Scholar
  20. Cui K, Huang J, Xing Y, Yu S, Xu C, Peng S (2008) Mapping QTLs for seedling characteristics under different water supply conditions in rice (Oryza sativa). Physiol Plant 132:53–68PubMedGoogle Scholar
  21. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510PubMedCrossRefGoogle Scholar
  22. De Klerk GJ, Van der Krieken W, De Jong JC (1999) The formation of adventitious roots: new concepts, new possibilities. In Vitro Cell Dev Biol Plant 35:189–199CrossRefGoogle Scholar
  23. De Klerk GJ, Hanecakova J, Jasik J (2001) The role of cytokinins in rooting of stem slices cut from apple microcuttings. Plant Biosyst 135:79–84CrossRefGoogle Scholar
  24. Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445PubMedCrossRefGoogle Scholar
  25. Dohling S, Kumaria S, Tandon P (2012) Multiple shoot induction from axillary bud cultures of the medicinal orchid, Dendrobium longicornu. AoB Plants 2012:32CrossRefGoogle Scholar
  26. Druege U, Zerche S, Kadner R, Ernst M (2000) Relation between nitrogen status, carbohydrate distribution and subsequent rooting of Chrysanthemum cuttings as affected by pre-harvest nitrogen supply and cold-storage. Ann Bot 85:687–701CrossRefGoogle Scholar
  27. Druege U, Zerche S, Kadner R (2004) Nitrogen- and storage-affected carbohydrate partitioning in high-light-adapted Pelargonium cuttings in relation to survival and adventitious root formation under low light. Ann Bot 94:831–842PubMedCrossRefGoogle Scholar
  28. Duan L, Dietrich D, Ng CH, Chan PM, Bhalerao R, Bennett MJ, Dinneny JR (2013) Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell 25:324–341PubMedCentralPubMedCrossRefGoogle Scholar
  29. El-Showk S, Ruonala R, Helariutta Y (2013) Crossing paths: cytokinin signalling and crosstalk. Development 140:1373–1383PubMedCrossRefGoogle Scholar
  30. Fang S, Yan X, Liao H (2009) 3D reconstruction and dynamic modeling of root architecture in situ and its application to crop phosphorus research. Plant J 60:1096–1108PubMedCrossRefGoogle Scholar
  31. French A, Ubeda-Tomas S, Holman TJ, Bennett MJ, Pridmore T (2009) High-throughput quantification of root growth using a novel image-analysis tool. Plant Physiol 150:1784–1795PubMedCentralPubMedCrossRefGoogle Scholar
  32. Furbank RT, Tester M (2011) Phenomics-technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635–644PubMedCrossRefGoogle Scholar
  33. Galkovskyi T, Mileyko Y, Bucksch A, Moore B, Symonova O, Price CA, Topp CN, Iyer-Pascuzzi AS, Zurek PR, Fang S, Harer J, Benfey PN, Weitz JS (2012) GiA roots: software for the high throughput analysis of plant root system architecture. BMC Plant Biol 12:116PubMedCentralPubMedCrossRefGoogle Scholar
  34. Garrido G, Cano EA, Arnao MB, Acosta M, Sánchez-Bravo J (1996) Influence of cold storage period and auxin treatment on the subsequent rooting of carnation cuttings. Sci Hortic 65:73–84CrossRefGoogle Scholar
  35. Garrido G, Cano EA, Acosta M, Sánchez-Bravo J (1998) Formation and growth of roots in carnation cuttings: influence of cold storage period and auxin treatment. Sci Hortic 74:219–231CrossRefGoogle Scholar
  36. Garrido G, Guerrero JR, Cano EA, Acosta M, Sánchez-Bravo J (2002) Origin and basipetal transport of the IAA responsible for rooting of carnation cuttings. Physiol Plant 114:303–312PubMedCrossRefGoogle Scholar
  37. Garrido G, Arnao MB, Acosta M, Sánchez-Bravo J (2003) Polar transport of indole-3-acetic acid in relation to rooting in carnation cuttings: influence of cold storage duration and cultivar. Biol Plant 47:481–485CrossRefGoogle Scholar
  38. Geiss G, Gutierrez L, Bellini C (2010) Adventitious root formation: new insights and perspectives. In: Beekman T (ed) Root development. Wiley-Blackwell, Oxford, pp 127–156Google Scholar
  39. George EF, Debergh PC (2008) Micropropagation: uses and methods. In: George EF, Hall MA, De Klerk G-J (eds) Plant propagation by tissue culture. Springer, Dordrecht, pp 29–64Google Scholar
  40. Guerrero JR, Garrido G, Acosta M, Sánchez-Bravo J (1999) Influence of 2,3,5-triiodobenzoic acid and 1-N-naphthylphthalamic acid on indoleacetic acid transport in carnation cuttings: relationship with rooting. J Plant Growth Regul 18:183–190PubMedCrossRefGoogle Scholar
  41. Gutierrez L, Bussell JD, Pacurar DI, Schwambach J, Pacurar M, Bellini C (2009) Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell 21:3119–3132PubMedCentralPubMedCrossRefGoogle Scholar
  42. Gutierrez L, Mongelard G, Flokova K, Pacurar DI, Novak O, Staswick P, Kowalczyk M, Pacurar M, Demailly H, Geiss G, Bellini C (2012) Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell 24:2515–2527PubMedCentralPubMedCrossRefGoogle Scholar
  43. Han B, Huang X (2013) Sequencing-based genome-wide association study in rice. Curr Opin Plant Biol 16:133–138PubMedCrossRefGoogle Scholar
  44. Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, Hayashi H, Sakakibara H (2008) Regulation of cytokinin biosynthesis, compartmentalization and translocation. J Exp Bot 59:75–83PubMedCrossRefGoogle Scholar
  45. Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156–161PubMedCrossRefGoogle Scholar
  46. Husen A, Pal M (2007) Metabolic changes during adventitious root primordium development in Tectona grandis Linn. f. (teak) cuttings as affected by age of donor plants and auxin (IBA and NAA) treatment. New For 33:309–323CrossRefGoogle Scholar
  47. Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Shibata Y, Gomi K, Umemura I, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M (2005) Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling. Plant Cell 17:1387–1396PubMedCentralPubMedCrossRefGoogle Scholar
  48. Iyer-Pascuzzi AS, Symonova O, Mileyko Y, Hao Y, Belcher H, Harer J, Weitz JS, Benfey PN (2010) Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant Physiol 152:1148–1157PubMedCentralPubMedCrossRefGoogle Scholar
  49. Jain SM, Ochatt SJ (2010) Protocols for in vitro propagation of ornamental plants. Springer protocols. Humana press, New YorkCrossRefGoogle Scholar
  50. Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451PubMedCrossRefGoogle Scholar
  51. Kitomi Y, Ito H, Hobo T, Aya K, Kitano H, Inukai Y (2011) The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown root initiation in rice through the induction of OsRR1, a type-A response regulator of cytokinin signaling. Plant J 67:472–484PubMedCrossRefGoogle Scholar
  52. Klopotek Y, Haensch K-T, Hause B, Hajirezaei M-R, Druege U (2010) Dark exposure of petunia cuttings strongly improves adventitious root formation and enhances carbohydrate availability during rooting in the light. J Plant Physiol 167:547–554PubMedCrossRefGoogle Scholar
  53. Konieczny R, Kepczynski J, Pilarska M, Cembrowska D, Menzel D, Samaj J (2009) Cytokinin and ethylene affect auxin transport-dependent rhizogenesis in hypocotyls of common ice plant (Mesembryanthemum crystallinum L.). J Plant Growth Regul 28:331–340CrossRefGoogle Scholar
  54. Kordi M, Kaviani B, Hashemabadi D (2013) In vitro propagation of Kalanchoe blossfeldiana using BA and NAA. Eur J Exp Biol 3:285–288Google Scholar
  55. Kulka RG (2006) Cytokinins inhibit epiphyllous plantlet development on leaves of Bryophyllum (Kalanchoë) marnierianum. J Exp Bot 57:4089–4098PubMedCrossRefGoogle Scholar
  56. Lau S, De Smet I, Kolb M, Meinhardt H, Jurgens G (2011) Auxin triggers a genetic switch. Nat Cell Biol 13:611–615PubMedCrossRefGoogle Scholar
  57. Li YJ, Fu YR, Huang JG, Wu CA, Zheng CC (2011) Transcript profiling during the early development of the maize brace root via Solexa sequencing. FEBS J 278:156–166PubMedCrossRefGoogle Scholar
  58. Liu H, Wang S, Yu X, Yu J, He X, Zhang S, Shou H, Wu P (2005) ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J 43:47–56PubMedCrossRefGoogle Scholar
  59. Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Vaclavikova K, Miyawaki K, Kakimoto T (2008) Cytokinins are central regulators of cambial activity. Proc Natl Acad Sci USA 105:20027–20031PubMedCentralPubMedCrossRefGoogle Scholar
  60. Matusova R, Rani K, Verstappen FW, Franssen MC, Beale MH, Bouwmeester HJ (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934PubMedCentralPubMedCrossRefGoogle Scholar
  61. Mergemann H, Sauter M (2000) Ethylene induces epidermal cell death at the site of adventitious root emergence in rice. Plant Physiol 124:609–614PubMedCentralPubMedCrossRefGoogle Scholar
  62. Mishra BS, Singh M, Aggrawal P, Laxmi A (2009) Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development. PLoS One 4:e4502PubMedCentralPubMedCrossRefGoogle Scholar
  63. Miyawaki K, Matsumoto-Kitano M, Kakimoto T (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J 37:128–138PubMedCrossRefGoogle Scholar
  64. Mizukami Y, Fischer RL (2000) Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Natl Acad Sci USA 97:942–947PubMedCentralPubMedCrossRefGoogle Scholar
  65. Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255–264PubMedCrossRefGoogle Scholar
  66. Moubayidin L, Di Mambro R, Sabatini S (2009) Cytokinin-auxin crosstalk. Trends Plant Sci 14:557–562PubMedCrossRefGoogle Scholar
  67. Negi S, Sukumar P, Liu X, Cohen JD, Muday GK (2010) Genetic dissection of the role of ethylene in regulating auxin-dependent lateral and adventitious root formation in tomato. Plant J 61:3–15PubMedCrossRefGoogle Scholar
  68. Nordstrom AC, Jacobs FA, Eliasson L (1991) Effect of exogenous indole-3-acetic acid and indole-3-butyric acid on internal levels of the respective auxins and their conjugation with aspartic acid during adventitious root formation in pea cuttings. Plant Physiol 96:856–861PubMedCentralPubMedCrossRefGoogle Scholar
  69. O’Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, Bowles DJ (1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274:1914–1917PubMedCrossRefGoogle Scholar
  70. Pati PK, Rath SP, Sharma M, Sood A, Ahuja PS (2006) In vitro propagation of rose—a review. Biotechnol Adv 24:94–114PubMedCrossRefGoogle Scholar
  71. Pernisova M, Klima P, Horak J, Valkova M, Malbeck J, Soucek P, Reichman P, Hoyerova K, Dubova J, Friml J, Zazimalova E, Hejatko J (2009) Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux. Proc Natl Acad Sci USA 106:3609–3614PubMedCentralPubMedCrossRefGoogle Scholar
  72. Perret JS, Al-Belushi ME, Deadman M (2007) Non-destructive visualization and quantification of roots using computed tomography. Soil Biol Biochem 39:391–399CrossRefGoogle Scholar
  73. Pop TI, Pamfil D, Bellini C (2011) Auxin control in the formation of adventitious roots. Not Bot Horti Agrobot Cluj Napoca 39:309–316Google Scholar
  74. Prusinkiewicz P, Crawford S, Smith RS, Ljung K, Bennett T, Ongaro V, Leyser O (2009) Control of bud activation by an auxin transport switch. Proc Natl Acad Sci USA 106:17431–17436PubMedCentralPubMedCrossRefGoogle Scholar
  75. Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174–180PubMedCrossRefGoogle Scholar
  76. Ramirez-Carvajal GA, Morse AM, Dervinis C, Davis JM (2009) The cytokinin type-B response regulator PtRR13 is a negative regulator of adventitious root development in Populus. Plant Physiol 150:759–771PubMedCentralPubMedCrossRefGoogle Scholar
  77. Rasmussen A, Mason MG, De Cuyper C, Brewer PB, Herold S, Agusti J, Geelen D, Greb T, Goormachtig S, Beeckman T, Beveridge CA (2012) Strigolactones suppress adventitious rooting in Arabidopsis and pea. Plant Physiol 158:1976–1987PubMedCentralPubMedCrossRefGoogle Scholar
  78. Riefler M, Novak O, Strnad M, Schmulling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54PubMedCentralPubMedCrossRefGoogle Scholar
  79. Rigal A, Yordanov YS, Perrone I, Karlberg A, Tisserant E, Bellini C, Busov VB, Martin F, Kohler A, Bhalerao R, Legue V (2012) The AINTEGUMENTA LIKE1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia in poplar. Plant Physiol 160:1996–2006PubMedCentralPubMedCrossRefGoogle Scholar
  80. Robert S, Kleine-Vehn J, Barbez E, Sauer M, Paciorek T, Baster P, Vanneste S, Zhang J, Simon S, Covanova M, Hayashi K, Dhonukshe P, Yang Z, Bednarek SY, Jones AM, Luschnig C, Aniento F, Zazimalova E, Friml J (2010) ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell 143:111–121PubMedCentralPubMedCrossRefGoogle Scholar
  81. Roy SJ, Tucker EJ, Tester M (2011) Genetic analysis of abiotic stress tolerance in crops. Curr Opin Plant Biol 14:232–239PubMedCrossRefGoogle Scholar
  82. Schilmiller AL, Howe GA (2005) Systemic signalling in the wound response. Curr Opin Plant Biol 8:369–377PubMedCrossRefGoogle Scholar
  83. Sheela VL (2008) Carnation. In: Peter KV (ed) Flowers for trade. New India Publishing, New Delhi, pp 95–112Google Scholar
  84. Shinohara N, Taylor C, Leyser O (2013) Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLoS Biol 11:e1001474PubMedCentralPubMedCrossRefGoogle Scholar
  85. Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 54:118–130Google Scholar
  86. Sorin C, Bussell JD, Camus I, Ljung K, Kowalczyk M, Geiss G, McKhann H, Garcion C, Vaucheret H, Sandberg G, Bellini C (2005) Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. Plant Cell 17:1343–1359PubMedCentralPubMedCrossRefGoogle Scholar
  87. Sorin C, Negroni L, Balliau T, Corti H, Jacquemot MP, Davanture M, Sandberg G, Zivy M, Bellini C (2006) Proteomic analysis of different mutant genotypes of Arabidopsis led to the identification of 11 proteins correlating with adventitious root development. Plant Physiol 140:349–364PubMedCentralPubMedCrossRefGoogle Scholar
  88. Steffens B, Wang J, Sauter M (2006) Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice. Planta 223:604–612PubMedCrossRefGoogle Scholar
  89. Tanase K, Nishitani C, Hirakawa H, Isobe S, Tabata S, Ohmiya A, Onozaki T (2012) Transcriptome analysis of carnation (Dianthus caryophyllus L.) based on next-generation sequencing technology. BMC Genomics 13:292PubMedCentralPubMedCrossRefGoogle Scholar
  90. Topp CN, Iyer-Pascuzzi AS, Anderson JT, Lee CR, Zurek PR, Symonova O, Zheng Y, Bucksch A, Mileyko Y, Galkovskyi T, Moore BT, Harer J, Edelsbrunner H, Mitchell-Olds T, Weitz JS, Benfey PN (2013) 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture. Proc Natl Acad Sci USA 110:E1695–E1704PubMedCentralPubMedCrossRefGoogle Scholar
  91. Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530PubMedCrossRefGoogle Scholar
  92. Werner T (2010) Next generation sequencing in functional genomics. Brief Bioinform 11:499–511PubMedCrossRefGoogle Scholar
  93. Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmulling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550PubMedCentralPubMedCrossRefGoogle Scholar
  94. Yagi M, Kimura T, Yamamoto T, Isobe S, Tabata S, Onozaki T (2012) QTL analysis for resistance to bacterial wilt (Burkholderia caryophylli) in carnation (Dianthus caryophyllus) using an SSR-based genetic linkage map. Mol Breed 30:495–509CrossRefGoogle Scholar
  95. Zeng G, Birchfield ST, Wells CE (2008) Automatic discrimination of fine roots in minirhizotron images. New Phytol 177:549–557PubMedGoogle Scholar
  96. Zhao Y (2008) The role of local biosynthesis of auxin and cytokinin in plant development. Curr Opin Plant Biol 11:16–22PubMedCrossRefGoogle Scholar
  97. Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genet 1:5–20CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Departamento de Biología Vegetal (Fisiología Vegetal)Universidad de MurciaMurciaSpain
  2. 2.Instituto de BioingenieríaUniversidad Miguel HernándezElche, AlicanteSpain

Personalised recommendations