On a Stochastic Coupled System of Reaction-Diffusion of Nonlocal Type

  • E. A. Coayla-Teran
  • J. Ferreira
  • P. M. D. de Magalhães
  • H. B. de Oliveira
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 75)


In this article we investigate the existence and uniqueness of weak solutions for a stochastic nonlinear parabolic coupled system of reaction-diffusion of nonlocal type, and with multiplicative white noise. An important result on the asymptotic behavior of the weak solutions is presented as well.



We thank to the referees for useful comments and suggestions.


  1. 1.
    Arnold, L.: Stochastic Differential Equations: Theory and Applications. Wiley, New York (1974)zbMATHGoogle Scholar
  2. 2.
    Breckner, H. (Lisei): Galerkin approximation and the strong solution of the stochastic NavierStokes equation. J. Appl. Math. Stoch. Anal. 13(3), 239–259 (2000)Google Scholar
  3. 3.
    Capasso, V., Di Libdo, A.: Global attractivity for reaction-diffusion system. The case of nondiagonal matrices. J. Math. Anal. Appl. 177, 510–529 (1993)CrossRefzbMATHGoogle Scholar
  4. 4.
    Chipot, M.: The diffusion of a population partly driven by its preferences. Arch. Ration. Mech. Anal. 155, 237–259 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Chipot, M., Corrêa, F.J.S.A.: Boundary layer solutions to functional elliptic equations. Bull. Braz. Math. Soc. New Ser. 40(3), 381–393 (2009)CrossRefzbMATHGoogle Scholar
  6. 6.
    Chipot, M., Lovat, B.: Some remarks on nonlocal elliptic and parabolic problems. Nonlinear Anal. 30(7), 4619–4627 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Chipot, M., Lovat, B.: On the asymptotic behaviour of some nonlocal problems. Positivity 3, 65–81 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Chipot, M., Rodrigues, J.F.: On a class of nonlocal nonlinear problems. Math. Model. Numer. Anal. 26(3), 447–468 (1992)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Coayla-Teran, E.A., Ferreira, J., Magalhães, P.M.D.: Weak solutions for random nonlinear parabolic equations of nonlocal type. Random Oper. Stoch. Equ. 16, 213–222 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Corrêa, F.J.S.A., Menezes, S.D.B., Ferreira, J.: On a class of problems involving a nonlocal operator. Appl. Math. Comput. 147, 475–489 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications, vol. 44. Cambridge University Press, Cambridge (1992)Google Scholar
  12. 12.
    Gihman, I.I., Skorohod, A.V.: Stochastic Differential Equations. Springer, Berlin (1974)Google Scholar
  13. 13.
    Jüngel, A.: Diffusive and nondiffusive population models. In: Mathematical Modeling of Collective Behavior in Socio-economic and Life Sciences. Modeling and Simulation in Science, Engineering and Technology, pp. 397–425. Birkhäuser, Boston (2010)Google Scholar
  14. 14.
    Lepoutre, T., Pierre, M., Rolland, G.: Global well-posedness of a conservative relaxed cross diffusion system. SIAM J. Math. Anal. 44(3), 1674–1693 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Oliveira, L.A.F.: On reaction-diffusion system. Electron. J. Differ. Equ. 24, 1–10 (1998)Google Scholar
  16. 16.
    Rozovskii, B.L.: Stochastic Evolution Systems. Kluwer, Dordrecht (1990)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • E. A. Coayla-Teran
    • 1
  • J. Ferreira
    • 2
    • 3
  • P. M. D. de Magalhães
    • 4
  • H. B. de Oliveira
    • 3
    • 5
  1. 1.IM – Universidade Federal da BahiaSalvadorBrasil
  2. 2.UAG – Universidade Federal Rural de PernambucoGaranhunsBrasil
  3. 3.CMAF – Universidade de LisboaLisboaPortugal
  4. 4.DM – Universidade Federal de Ouro PretoOuro PretoBrasil
  5. 5.FCT – Universidade do AlgarveFaroPortugal

Personalised recommendations