Skip to main content

Performance of Hyperelastic Material Laws in Simulating Biaxial Deformation Response of Polypropylene and High Impact Polystyrene

  • Chapter
  • First Online:
Book cover Numerical Modeling of Materials Under Extreme Conditions

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 35))

  • 1315 Accesses

Abstract

Free surface moulding processes such as thermoforming and blow moulding involve thermal and spatial varying rate dependent biaxial deformation of polymer. These processes are so rapid that the entire forming took place in a matter of seconds. As a result of the elevated rate of deformation, assumption that the deforming polymers experience no time dependent viscous dissipation or perfectly elastic up to large strain has became a common practice in numerical simulation. Following the above assumption, Cauchy’s elastic and hyperelastic theories, originally developed for vulcanised natural rubber has been widely used to represent deforming polymeric materials in free surface moulding processes. To date, various methodologies were applied in the development of these theories, the most significant are those develop purely based on mathematical interpolation (mathematical models) and a more scientific network theories that involves the interpretation of macro-molecular structure within the polymer. In this chapter, the most frequently quoted Cauchy’s elastic and hyperelastic theories, including Ogden, Mooney–Rivlin, neo-Hookean, 3-chain, 8-chain, Van der Waals full network, Ball’s tube model, Edwards–Vilgis crosslinks-sliplinks model and the elastic model of Sweeney–Ward are reviewed. These models were analysed and fitted to a series of experimental high strain rate, high temperature, biaxial deformations data of polypropylene (PP) and high impact polystyrene (HIPS). The performance and suitability of the various models in capturing the polymer’s complex deformation behaviour during free surface moulding processes is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hooke, R., De Potentia Restitutiva or of Spring Explaining the Power of Springing Bodies, p. 23. London (1678)

    Google Scholar 

  2. Markovitz, H.: The emergency of rheology. Physics Today (American Institute of Physics) 21(4), 23–33 (1968)

    Google Scholar 

  3. Truesdell, C.A., Cauchy’s First Attempt at Molecular Theory of Elasticity, Bollettino di Storia delle Scienze Matematiche. Il Giardino di Archimede 1(2), 133–143 (1981)

    Google Scholar 

  4. Bogolyubov, A.N., Augustin Cauchy and His Contribution to Mechanics and Physics (Russian), Studies in the History of Physics and Mechanics, pp. 179–201. Nauka, Moscow (1988)

    Google Scholar 

  5. Dahan-Dalmédico, A., La Propagation Des Ondes En Eau Profonde Et Ses Développements Mathématiques (Poisson, Cauchy, 1815–1825), in The History of Modern Mathematics II, pp. 129–168. Boston, MA (1989)

    Google Scholar 

  6. Truesdell, C.A.: Cauchy and the modern mechanics of continua. Rev. Hist. Sci. 45(1), 5–24 (1992)

    Article  Google Scholar 

  7. Mooney, M.: A theory of large elastic deformation. J. Appl. Phys. 11(9), 582–592 (1940)

    Article  Google Scholar 

  8. Rivlin, R.S.: Large elastic deformations of isotropic materials, I, II, III, fundamental concepts. Philos. Trans. R. Soc. Lond. Ser. A 240, 459–525 (1948)

    Article  Google Scholar 

  9. Rivlin, R.S.: Large elastic deformations of isotropic materials, IV, further developments of the general theory. Philos. Trans. R. Soc. Lond. Ser. A 241(835), 375–397 (1948)

    Article  Google Scholar 

  10. Ogden, R.W., Large deformation isotropic elasticity: on the correlation of theory and experiment for incompressible rubberlike solids. In: Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, vol. 365, pp. 565–584 (1972)

    Google Scholar 

  11. Treloar, L.R.G.: Stress-strain data for vulcanized rubber under various types of deformation. Trans. Faraday Soc. 40, 59–70 (1944)

    Article  Google Scholar 

  12. Ward, I.M., Mechanical Properties of Solid Polymers, 2nd edn. Wiley, Hoboken (1983)

    Google Scholar 

  13. Treloar, L.R.G.: The elasticity of a network of long chain molecules I. Trans. Faraday Soc. 39, 36–64 (1943)

    Article  Google Scholar 

  14. Treloar, L.R.G.: The elasticity of a network of long chain molecules II. Trans. Faraday Soc. 39, 241–246 (1943)

    Article  Google Scholar 

  15. Kuhn, W., Grun, F.: Beziehungen zwichen elastischen Konstanten und Dehnungsdoppelbrechung hochelastischer stoffe. Kolloideitschrift 101, 248–271 (1942)

    Google Scholar 

  16. James, H.M., Guth, E.: Theory of elastic properties of rubber. J. Chem. Phys. 11(10), 455–481 (1943)

    Article  Google Scholar 

  17. Wang, M.C., Guth, E.: Statistical theory of networks of non-gaussian flexible chains. J. Chem. Phys. 20, 1144–1157 (1952)

    Article  Google Scholar 

  18. Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41(2), 389–412 (1993)

    Article  Google Scholar 

  19. Treloar, L.R.G., Riding, G., A non-gaussian theory for rubber in biaxial strain I, mechanical properties. In: Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, vol. 369, pp. 261–280 (1979)

    Google Scholar 

  20. Wu, P.D., Van der Giessen, E.: On improved 3-D non-Gaussian network models for rubber elasticity. Mech. Res. Commun. 19(5), 427–433 (1992)

    Article  Google Scholar 

  21. Wu, P.D., Van der Giessen, E.: On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers. J. Mech. Phys. Solids 41(3), 427–456 (1993)

    Article  Google Scholar 

  22. Flory, P.J., Erman, B.: Theory of elasticity of polymer networks. Macromolecules 15(3), 800–806 (1982)

    Article  Google Scholar 

  23. Ball, R.C., Doi, M., Edwards, S.F., Warner, M.: Elasticity of entangled networks. Polymer 22(8), 1010–1018 (1981)

    Article  Google Scholar 

  24. Doi, M., Edwards, S.F.: The theory of polymer dynamics. Oxford University Press, Oxford (1986)

    Google Scholar 

  25. Kilian, H.G.: Equation of state of real networks. Polymer 22, 209–217 (1981)

    Article  Google Scholar 

  26. Kilian, H.G.: Energy balance in networks simply elongated at constant temperature. Colloid Polym. Sci. 259, 1084–1091 (1981)

    Article  Google Scholar 

  27. Vilgis, T.H., Kilian, H.G.: The van der waals-network—a phenomenological approach to dense networks. Polymer 25, 71–74 (1984)

    Article  Google Scholar 

  28. Kilian, H.G., Vilgis, T.H.: Fundamental aspects of rubber-elasticity in real networks. Colloid Polym. Sci. 262, 15–21 (1984)

    Article  Google Scholar 

  29. Kilian, H.G.: An interpretation of the strain-invariants in largely strained networks. Colloid Polym. Sci. 263, 30–34 (1985)

    Article  Google Scholar 

  30. Edwards, S.F., Vilgis, T.H.: The effect of entanglements in rubber elasticity. Polymer 27(4), 483–492 (1986)

    Article  Google Scholar 

  31. Edwards, S.F., Vilgis, T.H.: The stress-strain relationship in polymer glasses. Polymer 28(3), 375–378 (1987)

    Article  Google Scholar 

  32. Rouse, P.E.: A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 21, 1272–1280 (1953)

    Article  Google Scholar 

  33. Flory, P.J.: Principles of Polymer Chemistry. Cornell University Press, New York (1966)

    Google Scholar 

  34. Flory, P.J.: Theory of Polymer Networks. The Effect of Local Constraints on Junctions. J. Chem. Phys. 66(12), 5720 (1977)

    Article  Google Scholar 

  35. Sweeney, J., Ward, I.M.: The modeling of multiaxial necking in polypropylene using a sliplink-crosslink theory. J. Rheol. 39(5), 861–872 (1995)

    Article  Google Scholar 

  36. Sweeney, J., Kakadjian, S., Craggs, G., Ward, I.M., The multiaxial stretching of polypropylene at high temperatures. In: ASME Mechanics of Plastics and Plastic Composites, MD vol. 68 / AMD vol. 215 pp. 357–364 (1995)

    Google Scholar 

  37. Sweeney, J., Ward, I.M.: A constitutive law for large deformations of polymers at high temperatures. J. Mech. Phys. Solids 44(7), 1033–1049 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Y. Tshai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tshai, K.Y., Harkin-Jones, E.M.A., Martin, P.J. (2014). Performance of Hyperelastic Material Laws in Simulating Biaxial Deformation Response of Polypropylene and High Impact Polystyrene. In: Bonora, N., Brown, E. (eds) Numerical Modeling of Materials Under Extreme Conditions. Advanced Structured Materials, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54258-9_9

Download citation

Publish with us

Policies and ethics