Advertisement

Multiscale Modeling of the Effect of Very Large Strain on the Microstructure Evolution and Ductility of Microalloyed Steels

  • Krzysztof MuszkaEmail author
  • Janusz Majta
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 35)

Abstract

This study addresses some aspects regarding mechanical behavior of bcc structures characterized by high grain refinement level developed using large plastic deformation. The fundamental mechanisms governing the behavior of the microalloyed steels at wide range of deformation conditions at nano, micro, meso-meter scale and at the continuum are discussed. Grain refinement levels, where the change in the ability of grains to strain hardening is observed, are identified with respect to the resulting changes in the meso and macro levels effects of precipitation and solid solution strengthening mechanisms. Differences in the description of strengthening mechanisms and ductility represented by maximum uniform elongation of ultrafine-grained (UFG) and nanocrystalline materials are also defined. Existing flow stress models for UFG materials are presented and their physical bases are discussed with respect to their application in the computer modeling process of mechanical behavior of bcc structures strengthened by alloying elements.

Keywords

Microalloyed steel Severe plastic deformation Ultrafine-grained structure Multiscale modeling 

Notes

Acknowledgments

The financial support of MNiSW (Grant no. N N508 3982 37) is gratefully acknowledged. Authors are grateful to Dr. Ł. Madej from AGH University of Science and Technology for generation FEM meshes of grained structures using DMR software.

References

  1. 1.
    Alexandrov, I.V.: Mater. Sci. Forum 584586 (2008)Google Scholar
  2. 2.
    Belyakov, A., Sakai, T., Miura, H.: Mater. Trans. JIM 41 (2000)Google Scholar
  3. 3.
    Conrad, H.: Mater. Sci. Eng. A 341 (2003)Google Scholar
  4. 4.
    Considère, A.: Mèmoire sur l’emploi du fer et de l’acier dans les constructions, pp. 5–149. Paris Press, Paris (1886)Google Scholar
  5. 5.
    Copreaux, J., Lanteri, S., Schmitt, J.-H.: Mater. Sci. Eng. A 164 (1993)Google Scholar
  6. 6.
    De Borst, R.: Comput. Mater. Sci. 43 (2008)Google Scholar
  7. 7.
    Hall, E.O.: Proc. Phys. Soc. London Sect. B 64 (1951)Google Scholar
  8. 8.
    Hansen, N.: Scr. Mater. 51 (2004)Google Scholar
  9. 9.
    Hansen, N.: Mater. Sci. Eng. A 409 (2005)Google Scholar
  10. 10.
    Hirth, J.P., Lothe, J.: Theory of Dislocations, 2nd edn, pp. 5–857. Wiley, New York (1982)Google Scholar
  11. 11.
    Holt, D.L.: Appl. Phys. 41 (1970)Google Scholar
  12. 12.
    Howe, A.A.: Mater. Sci. Technol. 25 (2009)Google Scholar
  13. 13.
    Humphreys, F.J., Chan, F.M.: Mater. Sci. Technol. 12 (1996)Google Scholar
  14. 14.
    Jazaeri, H., Humphreys, F.J.: Acta Mater. 52 (2004)Google Scholar
  15. 15.
    Jia, D., Ramesh, K.T., Ma, E.: Acta. Mater. 51 (2003)Google Scholar
  16. 16.
    Khan, A.S., Huang, S.: Int. J. Plast. 8 (1992)Google Scholar
  17. 17.
    Khan, A.S., Suh, Y.S., Chen X., et al.: Int. J. Plast. 22 (2006)Google Scholar
  18. 18.
    Ko, Y.G., Shin, D.H., Park, K.-T., et al.: Scr. Mater. 54 (2006)Google Scholar
  19. 19.
    Kocks, U.F., Canova, G.R.: In: Hansen, N., Leffers, T., Lilholt, H. (eds.) Deformation of Polycrystals: Mechanisms and Microstructures, p. 185. Riso National Laboratory, Roskilde (1981)Google Scholar
  20. 20.
    Ma, E.: JOM 58(4), 49–53 (2006)CrossRefGoogle Scholar
  21. 21.
    Madej, Ł.: Development of the Modeling Strategy for the Strain Localization Simulation Based on the Digital Material Representation, pp. 124–140. AGH University Press, Krakow (2010)Google Scholar
  22. 22.
    Madej, Ł., Rauch, Ł., Yang, R.: Arch. Metall. Mater. Sci. 54 (2009)Google Scholar
  23. 23.
    Majta, J., Doniec, K., Muszka, K.: Mater. Sci. Forum 638642 (2010)Google Scholar
  24. 24.
    Majta, J., Muszka, K.: Mater. Sci. Eng. A 464 (2007)Google Scholar
  25. 25.
    Majta, J., Pietrzyk, M., Lenard, J.G.: Mater. Sci. Eng. A 208 (1996)Google Scholar
  26. 26.
    Muszka, K., Doniec, K., Majta, J.: Comput. Meth. Mater. Sci. 9 (2009)Google Scholar
  27. 27.
    Muszka, K., Hodgson, P.D., Majta, J.: J. Mater. Process. Technol. 177 (2006)Google Scholar
  28. 28.
    Muszka, K., Hodgson, P.D.: J. Majta, Mater. Sci. Eng. A 500 (2009)Google Scholar
  29. 29.
    Muszka, K., Majta, J., Hodgson, P.D.: ISIJ Int. 47 (2007)Google Scholar
  30. 30.
    Nes, E., Marthinsen, K., Holmedal, B.: Mater. Sci. Technol. 20 (2004)Google Scholar
  31. 31.
    Oscarsson, A., Hutchinson, B., Nicol B., et al.: Mater. Sci. Forum 157162 (1994)Google Scholar
  32. 32.
    Petch, N.J.: J. Iron Steel Inst. 174 (1953)Google Scholar
  33. 33.
    Sellars, C.M.: In: Rodriguez-Ibabe, J.M., Gutierrez, I., Lopez, B. (eds.) Modelling Strain Induced Precipitation of Niobium Carbonitride during Hot Rolling of Microalloyed Steel. Materials Science Forum, vol. 500–501, p. 73. TTP, Donostia-San Sebastian (1998)Google Scholar
  34. 34.
    da Silva, M.G., Ramesh, K.T.: Int J Plast 13 (1997)Google Scholar
  35. 35.
    Song, R., Ponge, D., Raabe, D., Speer, J.G., Matlock, D.K.: Mater. Sci. Eng. A 441 (2006)Google Scholar
  36. 36.
    Takayama, A., Yang, X., Miura, H. et al.: Mater. Sci. Eng A 478 (2008)Google Scholar
  37. 37.
    Taylor, G.I.: J. Jpn. Inst. Met. 62 (1938)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.AGH University of Science and TechnologyKrakowPoland

Personalised recommendations