Modeling of High Velocity Impact in Sandwich Beams with FGM Core

  • J. ZamaniEmail author
  • E. Etemadi
  • K. Hosseini Safari
  • A. Afaghi Khatibi
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 35)


In this work, the impact behavior of sandwich beams with asymmetrical and symmetrical Functionally Graded (FG) cores are investigated using finite element method. The ballistic limit and residual velocity of several sandwich beams with a FG core are studied. The ratios of residual kinetic energy as well as perforation energy to initial kinetic energy are calculated. Furthermore, the effects of failure strain, tangent modulus and thickness of face sheets on the behavior of sandwich beams are discussed. Additionally, the effects of initial velocity of the projectile on the damage extension of sandwich beam are thoroughly investigated. Results indicate that the strength of beams with asymmetrical FG core under high velocity impact is more than that of beams with symmetrical one.


Functionally graded materials Sandwich beams High velocity impact Finite element Ballistic limit 


  1. 1.
    Zenkert, D.: The Handbook of Sandwich Construction. Engineering Materials Advisory Services Ltd, London (1997)Google Scholar
  2. 2.
    Lee, L.J., Huang, K.Y., Fann, Y.J.: Dynamic response of composite sandwich plates subjected to low velocity impact. In: Proceedings of the 8th International Conference on Composite Materials, pp. 1–10 (1991)Google Scholar
  3. 3.
    Sun, C.T., Wu, C.L.: Low velocity impact of composite sandwich panels. In: Proceedings of the 32nd Structure Materials Conference, Baltimore, pp. 1123–1129 (1991)Google Scholar
  4. 4.
    Frostig, Y., Thomsen, O.T.: Higher-order free vibration of sandwich panels with a flexible core. Int. J. Solids Struct. 41, 1697–1724 (2004)CrossRefGoogle Scholar
  5. 5.
    Khalili, M.R., Malekzadeh, K., Mittal, R.K.: Effect of physical and geometrical parameters on transverse low-velocity impact response of sandwich panels with a transversely flexible core. Compos. Struct. 77, 430–443 (2007)CrossRefGoogle Scholar
  6. 6.
    Abrate, S.: Modeling of impacts on composite structure. Compos. Struct. 51, 129–138 (2001)CrossRefGoogle Scholar
  7. 7.
    Anderson, T.A.: An investigation of SDOF models for large mass impact on sandwich composites. Composites 36(2), 135–142 (2005)CrossRefGoogle Scholar
  8. 8.
    Torre, L., Kenny, J.M.: Impact testing and simulation of composite sandwich structures for civil transportation. Compos. Struct. 50(3), 257–267 (2000)CrossRefGoogle Scholar
  9. 9.
    Olsson, R.: Mass criterion for wave controlled impact response of composite plates. Composites 31(8), 879–887 (2000)CrossRefGoogle Scholar
  10. 10.
    Ávila, A.F.: Failure mode investigation of sandwich beams with functionally graded core. Compos. Struct. 81(3), 323–330 (2007)CrossRefGoogle Scholar
  11. 11.
    Freeman, B., Schwingler, E., Mahinfalah, M., Kellogg, K.: The effect of low-velocity impact on the fatigue life of sandwich composites. Compos. Struct. 70(3), 374–381 (2005)CrossRefGoogle Scholar
  12. 12.
    Anderson, T., Madenci, E.: Experimental investigation of low-velocity impact characteristics of sandwich composites. Compos. Struct. 50(3), 239–247 (2000)CrossRefGoogle Scholar
  13. 13.
    Schubel, P.M., Luo, J.J., Daniel, I.M.: Low velocity impact behavior of composite sandwich panels. Composites 36(10), 1389–1396 (2005)CrossRefGoogle Scholar
  14. 14.
    Palazotto, A.N., Herup, E.J., Gummadi, L.N.B.: Finite element analysis of low-velocity impact on composite sandwich plates. Compos. Struct. 49(2), 209–227 (2000)CrossRefGoogle Scholar
  15. 15.
    Meo, M., Morris, A.J., Vignjevic, R., Marengo, G.: Numerical simulations of low-velocity impact on an aircraft sandwich panel. Compos. Struct. 62, 353–360 (2003)CrossRefGoogle Scholar
  16. 16.
    Dazhi, J., Dongwei, S.: Local displacement of core in two-layer sandwich composite structures subjected to low velocity impact. Compos. Struct. 71(1), 53–60 (2005)CrossRefGoogle Scholar
  17. 17.
    Choi, I.H.: Contact force history analysis of composite sandwich plates subjected to low-velocity impact. Compos. Struct. 75(1–4), 582–586 (2006)CrossRefGoogle Scholar
  18. 18.
    Gottesman, T., Bass, M., Samuel, A.: Criticality of impact damage in composite sandwich structures. In: Proceedings of 6th Inc. Conference of Composite Materials, pp. 3–27 (1987)Google Scholar
  19. 19.
    Avery, J.L., Sankar, B.V.: Compressive failure of sandwich beams with debonded face sheets. J. Compos. Mater. 34(11), 1176–1199 (2000)CrossRefGoogle Scholar
  20. 20.
    Abrate, S.: Impact on Composite Structures. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  21. 21.
    Charles, J.P., Guerda-Pegeorges, D.: Impact damage tolerance of helicopter sandwich structures. In: Proceedings of 23rd International SAMPE Conference, pp. 51–61 (1991)Google Scholar
  22. 22.
    Palm, T.E.: Impact resistance and residual compression strength of composite sandwich panels. Compos. Eng. 5(5), 273–286 (1995)Google Scholar
  23. 23.
    Wu, C.L., Sun, C.T.: Low velocity impact damage in composite sandwich beams. Compos. Struct. 34(1), 21–27 (1996)CrossRefGoogle Scholar
  24. 24.
    Shipsha, A., Hallstrom, S., Zenkert, D.: Failure mechanisms and modeling of impact damage in sandwich beams: a 2D approach. Part I: experimental investigation. J. Sandwich Struct. Mater. 5(1), 7–31 (2003)CrossRefGoogle Scholar
  25. 25.
    Venkataraman, S., Sankar, B.V.: Elasticity solution for stresses in a sandwich beam with functionally graded core. AIAA J. 41(12), 2501–2505 (2003)CrossRefGoogle Scholar
  26. 26.
    Nakamura, T., Wang, Z.Q.: Simulations of crack propagation in graded materials. Mech. Mater. 36(7), 601–622 (2004)CrossRefGoogle Scholar
  27. 27.
    Nettles, A.T., Hodge, A.J.: Impact testing of glass/phenolic honeycomb panels with graphite/epoxy faces sheets. In: Proceedings of 35th International SAMPE Symposium CA, pp. 1430–1440 (1990)Google Scholar
  28. 28.
    Sheikh, A.H., Bull, P.H., Kepler, J.A.: Behaviour of multiple composite plates subjected to ballistic impact. Compos. Sci. Technol. 69(6), 704–710 (2009)CrossRefGoogle Scholar
  29. 29.
    Aktay, L., Johnson, A.F., Holzapfel, M.: Prediction of impact damage on sandwich composite panels. Comput. Mater. Sci. 32, 252–260 (2005)CrossRefGoogle Scholar
  30. 30.
    Bohong, G., Jingyi, X.: Finite element calculation of 4-step 3-dimensional braided composite under ballistic perforation. Compos. B 35(4), 291–297 (2004)Google Scholar
  31. 31.
    Kärger, L., Baaran, J., Tebmer, J.: Rapid simulation of impacts on composite sandwich panels inducing barely visible damage. Compos. Struct. 79(4), 527–534 (2007)CrossRefGoogle Scholar
  32. 32.
    Bashurov, V.V., Bebenin, G.V., Belov, G.V., Bukharev, Y.N.: Experimental modelling and numerical simulation of high- and hypervelocity space debris impact to spacecraft shield protection. Int. J. Impact Eng. 20(1–5), 69–78 (1977)Google Scholar
  33. 33.
    Ambur, D.R., Jaunky, N., Lawson, R.E., Knight, N.F.: Numerical simulations for high-energy impact of thin plates. Int. J. Impact Eng. 25(7), 683–702 (2001)CrossRefGoogle Scholar
  34. 34.
    Anderson, T.A.: A 3-D elasticity solution for a sandwich composite with functionally graded core subjected to transverse loading by a rigid sphere. Compos. Struct. 60(3), 265–274 (2003)CrossRefGoogle Scholar
  35. 35.
    Apetre, N.A., Sankar, B.V., Ambur, D.R.: Low-velocity impact response of sandwich beams with functionally graded core. Int. J. Solids Struct. 43(9), 2479–2496 (2006)CrossRefGoogle Scholar
  36. 36.
    Kashtalyan, M., Menshykova, M.: Three-dimensional elasticity solution for sandwich panels with a functionally graded core. Compos. Struct. 79, 587–892 (2007)Google Scholar
  37. 37.
    Kirugulige, M.S., Kitey, R., Tippur, H.V.: Dynamic fracture behavior of model sandwich structures with functionally graded core: a feasibility study. Compos. Sci. Technol. 65(7–8), 1052–1068 (2005)CrossRefGoogle Scholar
  38. 38.
    Etemadi, E., Afaghi, A., Takaffoli, M.: 3D finite element simulation of sandwich panels with a functionally graded core subjected to low velocity impact. J. Compos. struct. 89, 28–34 (2009)CrossRefGoogle Scholar
  39. 39.
    Das, M., Barut, A., Madenci, E., Ambur, D.R.: A triangular plate element for thermo-elastic analysis of sandwich panels with a functionally graded core. Int. J. Numer. Meth. Eng. 68, 940–966 (2006)CrossRefGoogle Scholar
  40. 40.
    Zhu, H., Sankar, B.V.: Analysis of sandwich TPS panel with functionally graded foam core by Galerkin method. Compos. Struct. 77, 280–287 (2007)CrossRefGoogle Scholar
  41. 41.
    Lebe, P., Dong, M., Schmauder, S.: Self-consistent matricity model to simulate the mechanical behavior of interpenetrating microstructures. Comput. Mater. Sci. 15(4), 455–465 (1999)CrossRefGoogle Scholar
  42. 42.
    Tohgo, K., Masunari, A., Yoshida, M.: Two-phase composite model taking into account the matricity of microstructure and its application to functionally graded materials. Compos. A 37(10), 1688–1695 (2006)CrossRefGoogle Scholar
  43. 43.
    Chan, S., Fawaz, Z., Behdinan, K., Amid, R.: Ballistic limit prediction using a numerical model with progressive damage capability. Compos. Struct. 77(4), 466–474 (2007)CrossRefGoogle Scholar
  44. 44.
    Naik, N.K., Shrirao, P.: Composite structures under ballistic impact. Compos. Struct. 66(1–4), 579–590 (2004)CrossRefGoogle Scholar
  45. 45.
    Lin, L.C., Bhatangar, A.: Ballistic energy absorption of camposites. Int. SASMPE Tech. Conf. 23, 669–683 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • J. Zamani
    • 1
    Email author
  • E. Etemadi
    • 1
  • K. Hosseini Safari
    • 1
  • A. Afaghi Khatibi
    • 2
  1. 1.Faculty of Mechanical EngineeringK. N. Toosi University of TechnologyTehranIran
  2. 2.American University of SharjahSharjahUAE

Personalised recommendations