Simulation of Thermal and Electrical Transport in Nanotube and Nanowire Composites

  • Satish KumarEmail author
  • Muhammad A. Alam
  • Jayathi Y. Murthy
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 35)


Nanotube-based thin-film composites promise significant improvement over existing technologies in the performance of large-area macroelectronics, flexible electronics, energy harvesting and storage, and in bio-chemical sensing applications. We present an overview of recent research on the electrical and thermal performance of thin-film composites composed of random 2D dispersions of nanotubes in a host matrix. Results from direct simulations of electrical and thermal transport in these composites using a finite volume method are compared to those using an effective medium approximation. The role of contact physics and percolation in influencing electrical and thermal behavior are explored. The effect of heterogeneous networks of semiconducting and metallic tubes on the transport properties of the thin film composites is investigated. Transport through a network of nanotubes is dominated by the interfacial resistance at the contact of two tubes. We explore the interfacial thermal interaction between two carbon nanotubes in a crossed configuration using molecular dynamics simulation and wavelet methods. We pass a high temperature pulse along one of the nanotubes and investigate the energy transfer to the other tube. Wavelet transformations of heat pulses show that how different phonon modes are excited and how they evolve and propagate along the tube axis depending on its chirality.


Nanotube Thin film transistor Nanocomposite Percolation Effective medium approximation Molecular dynamics Wavelet 



Support of J. Murthy and S. Kumar under NSF grants CTS-0312420, CTS-0219098, EE-0228390, the Purdue Research Foundation and Purdue’s Network for Computational Nanotechnology (NCN) is gratefully acknowledged.


  1. 1.
    Hur, S.H., Kocabas, C., Gaur, A., et al.: Printed thin-film transistors and complementary logic gates that use polymer-coated single-walled carbon nanotube networks. J. Appl. Phys. 98(11), 114302 (2005)CrossRefGoogle Scholar
  2. 2.
    Reuss, R.H., Chalamala, B.R., Moussessian, A., et al.: Macroelectronics: perspectives on technology and applications. Proc. IEEE 93(7), 1239–1256 (2005)CrossRefGoogle Scholar
  3. 3.
    Collins, P.C., Arnold, M.S., Avouris, P.: Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292(5517), 706–709 (2001)CrossRefGoogle Scholar
  4. 4.
    Kagan, C.R., Andry, P.: Thin film transistors. Marcel Dekker, New York (2003)CrossRefGoogle Scholar
  5. 5.
    Novak, J.P., Snow, E.S., Houser, E.J., et al.: Nerve agent detection using networks of single-walled carbon nanotubes. Appl. Phys. Lett. 83(19), 4026–4028 (2003)CrossRefGoogle Scholar
  6. 6.
    Alam, M.A., Nair, P.R.: Geometry of diffusion and the performance limits of nanobiosensors. Nanotechnology 501 lecture series.
  7. 7.
    Madelung, O.: Technology and applications of amorphous silicon. Springer, Berlin (2000)Google Scholar
  8. 8.
    Zhou, Y.X., Gaur, A., Hur, S.H., et al.: P-channel, n-channel thin film transistors and p-n diodes based on single wall carbon nanotube networks. Nano Lett. 4(10), 2031–2035 (2004)CrossRefGoogle Scholar
  9. 9.
    Snow, E.S., Campbell, P.M., Ancona, M.G., et al.: High-mobility carbon-nanotube thin-film transistors on a polymeric substrate. Appl. Phys. Lett. 86(3), 066802 (2005)CrossRefGoogle Scholar
  10. 10.
    Snow, E.S., Novak, J.P., Lay, M.D., et al.: Carbon nanotube networks: nanomaterial for macroelectronic applications. J. Vac. Sci. Technol. B 22(4), 1990–1994 (2004)CrossRefGoogle Scholar
  11. 11.
    Snow, E.S., Novak, J.P., Campbell, P.M., et al.: Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 82(13), 2145–2147 (2003)CrossRefGoogle Scholar
  12. 12.
    Cao, Q., Rogers, J.A.: Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv. Mater. 21(1), 29–53 (2009)CrossRefGoogle Scholar
  13. 13.
    Kumar, S., Murthy, J.Y., Alam, M.A.: Percolating conduction in finite nanotube networks. Phys. Rev. Lett. 95(6), 066802 (2005)CrossRefGoogle Scholar
  14. 14.
    Hur, S.H., Khang, D.Y., Kocabas, C., et al.: Nanotransfer printing by use of noncovalent surface forces: applications to thin-film transistors that use single-walled carbon nanotube networks and semiconducting polymers. Appl. Phys. Lett. 85(23), 5730–5732 (2004)CrossRefGoogle Scholar
  15. 15.
    Kocabas, C., Hur, S.H., Gaur, A., et al.: Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 1(11), 1110–1116 (2005)CrossRefGoogle Scholar
  16. 16.
    Kocabas, C., Shim, M., Rogers, J.A.: Spatially selective guided growth of high-coverage arrays and random networks of single-walled carbon nanotubes and their integration into electronic devices. J. Am. Chem. Soc. 128(14), 4540–4541 (2006)CrossRefGoogle Scholar
  17. 17.
    Milton, G.W.: The Theory of Composites. Cambridge University Press, New York (2002)CrossRefGoogle Scholar
  18. 18.
    Nan, C.W., Birringer, R., Clarke, D.R., et al.: Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81(10), 6692–6699 (1997)CrossRefGoogle Scholar
  19. 19.
    Kumar, S., Alam, M.A., Murthy, J.Y.: Computational model for transport in nanotube-based composites with applications to flexible electronics. ASME J. Heat Transf. 129(4), 500–508 (2007)CrossRefGoogle Scholar
  20. 20.
    Kumar, S., Pimparkar, N., Murthy, J.Y., et al.: Theory of transfer characteristics of nanotube network transistors. Appl. Phys. Lett. 88, 123505 (2006)CrossRefGoogle Scholar
  21. 21.
    Zhang, G., Qi, P., Wang, X., et al.: Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 314, 974–977 (2006)CrossRefGoogle Scholar
  22. 22.
    Arnold, M.S., Green, A.A., Hulvat, J.F., et al.: Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 1, 60–65 (2006)CrossRefGoogle Scholar
  23. 23.
    Huang, H., Liu, C., Wu, Y., et al.: Aligned carbon nanotube composite films for thermal management. Adv. Mater. 17, 1652 (2005)CrossRefGoogle Scholar
  24. 24.
    Nan, C.W., Liu, G., Lin, Y.H., et al.: Interface effect on thermal conductivity of carbon nanotube composites. Appl. Phys. Lett. 85(16), 3549–3551 (2004)CrossRefGoogle Scholar
  25. 25.
    Biercuk, M.J., Llaguno, M.C., Radosavljevic, M., et al.: Carbon nanotube composites for thermal management. Appl. Phys. Lett. 80(15), 2767–2769 (2002)CrossRefGoogle Scholar
  26. 26.
    Xu, X.J., Thwe, M.M., Shearwood, C., et al.: Mechanical properties and interfacial characteristics of carbon-nanotube-reinforced epoxy thin films. Appl. Phys. Lett. 81(15), 2833–2835 (2002)CrossRefGoogle Scholar
  27. 27.
    Reibold, M., Paufler, P., Levin, A.A., et al.: Carbon nanotubes in an ancient damascus sabre. Nature 444(16), 286 (2006)CrossRefGoogle Scholar
  28. 28.
    Hu, L., Hecht, D.S., Gruner, G.: Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 4(12), 2513–2517 (2004)CrossRefGoogle Scholar
  29. 29.
    Keblinski, P., Cleri, F.: Contact resistance in percolating networks. Phys. Rev. B 69(18), 184201 (2004)CrossRefGoogle Scholar
  30. 30.
    Hu, T., Grosberg, A.Y., Shklovskii, B.I.: Conductivity of a suspension of nanowires in a weakly conducting medium. Phys. Rev. B 73(15), 155434 (2006)CrossRefGoogle Scholar
  31. 31.
    Lukes, J.R., Zhong, H.L.: Thermal conductivity of individual single-wall carbon nanotubes. J. Heat Transf. Trans. ASME 129(6), 705–716 (2007)CrossRefGoogle Scholar
  32. 32.
    Maruyama, S., Igarashi, Y., Shibuta, Y.: Molecular dynamics simulations of heat transfer issues in carbon nanotubes. In: The 1st International Symposium on Micro and Nano Technology. Honolulu, Hawaii, USA (2004)Google Scholar
  33. 33.
    Small, J.P., Shi, L., Kim, P.: Mesoscopic thermal and thermoelectric measurements of individual carbon nanotubes. Solid State Commun. 127(2), 181–186 (2003)CrossRefGoogle Scholar
  34. 34.
    Maune, H., Chiu, H.Y., Bockrath, M.: Thermal resistance of the nanoscale constrictions between carbon nanotubes and solid substrates. Appl. Phys. Lett. 89(1), 013109 (2006)CrossRefGoogle Scholar
  35. 35.
    Carlborg, C.F., Shiomi, J., Maruyama, S.: Thermal boundary resistance between single-walled carbon nanotubes and surrounding matrices. Phys. Rev. B 78(20), 205406 (2008)Google Scholar
  36. 36.
    Zhong, H.L., Lukes, J.R.: Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling. Phys. Rev. B 74(12), 125403 (2006)CrossRefGoogle Scholar
  37. 37.
    Greaney, P.A., Grossman, J.C.: Nanomechanical energy transfer and resonance effects in single-walled carbon nanotubes. Phys. Rev. Lett. 98(12), 125503 (2007)CrossRefGoogle Scholar
  38. 38.
    Prasher, R.S., Hu, X.J., Chalopin, Y., et al.: Turning carbon nanotubes from exceptional heat conductors into insulators. Phys. Rev. Lett. 102, 105901 (2009)CrossRefGoogle Scholar
  39. 39.
    Pimparkar, N., Kumar, S., Murthy, J.Y., et al.: Current-voltage characteristics of long-channel nanobundle thin-film transistors: A ‘bottom-up’ perspective. IEEE Electron Device Lett. 28(2), 157–160 (2006)CrossRefGoogle Scholar
  40. 40.
    Bo, X.Z., Lee, C.Y., Strano, M.S., et al.: Carbon nanotubes-semiconductor networks for organic electronics: the pickup stick transistor. Appl. Phys. Lett. 86(18), 182102 (2005)CrossRefGoogle Scholar
  41. 41.
    Kumar, S., Blanchet, G.B., Hybertsen, M.S., et al.: Performance of carbon nanotube-dispersed thin-film transistors. Appl. Phys. Lett. 89(14), 143501 (2006)CrossRefGoogle Scholar
  42. 42.
    Kundert, K.S.: Sparse user’s guide. Department of Electrical Engineering and Computer Sciences, University of California, Berkeley (1988)Google Scholar
  43. 43.
    Pike, G.E., Seager, C.H.: Percolation and conductivity—computer study 1. Phys. Rev. B 10(4), 1421–1434 (1974)CrossRefGoogle Scholar
  44. 44.
    Alam, M.A.: Nanostructured electronic devices: percolation and reliability. Intel-purdue summer school on electronics from bottom up. (2009)
  45. 45.
    Foygel, M., Morris, R.D., Anez, D., et al.: Theoretical and computational studies of carbon nanotube composites and suspensions: electrical and thermal conductivity. Phys. Rev. B 71(10), 104201 (2005)CrossRefGoogle Scholar
  46. 46.
    Foygel, M., Morris, R.D., Anez, D., et al.: Theoretical and computational studies of carbon nanotube composites and suspensions: electrical and thermal conductivity. Phys. Rev. B 71(10), 104201 (2005)CrossRefGoogle Scholar
  47. 47.
    Shenogina, N., Shenogin, S., Xue, L., et al.: On the lack of thermal percolation in carbon nanotube composites. Appl. Phys. Lett. 87(13), 133106 (2005)CrossRefGoogle Scholar
  48. 48.
    Frank, D.J., Lobb, C.J.: Highly efficient algorithm for percolative transport studies in 2 dimensions. Phys. Rev. B 37(1), 302–307 (1988)CrossRefGoogle Scholar
  49. 49.
    Lobb, C.J., Frank, D.J.: Percolative conduction and the alexander-orbach conjecture in 2 dimensions. Phys. Rev. B 30(7), 4090–4092 (1984)CrossRefGoogle Scholar
  50. 50.
    Pimparkar, N., Alam, M.A.: A “Bottom-up” redefinition for mobility and the effect of poor tube-tube contact on the performance of CNT nanonet thin-film transistors. IEEE Electron Device Lett. 29(9), 1037–1039 (2008)CrossRefGoogle Scholar
  51. 51.
    Taur, Y., Ning, T.: Fundamentals of modern VLSI devices. Cambridge University Press, New York (1998)Google Scholar
  52. 52.
    Fuhrer, M.S., Nygard, J., Shih, L., et al.: Crossed nanotube junctions. Science 288(5465), 494–497 (2000)CrossRefGoogle Scholar
  53. 53.
    Seidel, R.V., Graham, A.P., Rajasekharan, B., et al.: Bias dependence and electrical breakdown of small diameter single-walled carbon nanotubes. J. Appl. Phys. 96(11), 6694–6699 (2004)CrossRefGoogle Scholar
  54. 54.
    Huxtable, S.T., Cahill, D.G., Shenogin, S., et al.: Interfacial heat flow in carbon nanotube suspensions. Nat. Mater. 2(11), 731–734 (2003)CrossRefGoogle Scholar
  55. 55.
    Kumar, S., Alam, M.A., Murthy, J.Y.: Effect of percolation on thermal transport in nanotube composites. Appl. Phys. Lett. 90(10), 104105 (2007)CrossRefGoogle Scholar
  56. 56.
    Bryning, M.B., Milkie, D.E., Islam, M.F., et al.: Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites. Appl. Phys. Lett. 87(16), 161909 (2005)CrossRefGoogle Scholar
  57. 57.
    Hung, M.T., Choi, O., Ju, Y.S., et al.: Heat conduction in graphite-nanoplatelet-reinforced polymer nanocomposites. Appl. Phys. Lett. 89(2), 023117 (2006)CrossRefGoogle Scholar
  58. 58.
    Kumar, S., Murthy, J.Y.: Interfacial thermal transport between nanotubes. J. Appl. Phys. 106(8), 084302 (2009)CrossRefGoogle Scholar
  59. 59.
    Brenner, D.W., Shenderova, O.A., Harrison, J.A., et al.: A second-generation reactive empirical bond order (rebo) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 14(4), 783–802 (2002)CrossRefGoogle Scholar
  60. 60.
    Osman, M.A., Srivastava, D.: Molecular dynamics simulation of heat pulse propagation in single-wall carbon nanotubes. Phys. Rev. B 72(12), 125413 (2005)CrossRefGoogle Scholar
  61. 61.
    Erhart, P., Albe, K.: The role of thermostats in modeling vapor phase condensation of silicon nanoparticles. Appl. Surf. Sci. 226(1–3), 12–18 (2004)CrossRefGoogle Scholar
  62. 62.
    Shiomi, J., Maruyama, S.: Non-fourier heat conduction in a single-walled carbon nanotube: Classical molecular dynamics simulations. Phys. Rev. B 73(20), 205420 (2006)CrossRefGoogle Scholar
  63. 63.
    Lau, K.M., Weng, H.: Climate signal detection using wavelet transform: How to make a time series sing. Bull. Am. Meteorol. Soc. 76(12), 2391–2402 (1995)CrossRefGoogle Scholar
  64. 64.
    Torrence, C., Compo, G.P.: A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79(1), 61–78 (1998)CrossRefGoogle Scholar
  65. 65.
    Liu, C.H., Huang, H., Wu, Y., et al.: Thermal conductivity improvement of silicone elastomer with carbon nanotube loading. Appl. Phys. Lett. 84(21), 4248–4250 (2004)CrossRefGoogle Scholar
  66. 66.
    Gong, Q.M., Li, Z., Bai, X.D., et al.: Thermal properties of aligned carbon nanotube/carbon nanocomposites. Mater. Sci. Eng. a-Struct. Mater. Prop. Microstruct. Process. 384(1–2), 209–214 (2004)CrossRefGoogle Scholar
  67. 67.
    Choi, S.U.S., Zhang, Z.G., Yu, W., et al.: Anomalous thermal conductivity enhancement in nanotube suspensions. Appl. Phys. Lett. 79(14), 2252–2254 (2001)CrossRefGoogle Scholar
  68. 68.
    Wen, D.S., Ding, Y.L.: Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotubes nanofluids). J. Thermophys. Heat Transf. 18(4), 481–485 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Satish Kumar
    • 1
    Email author
  • Muhammad A. Alam
    • 2
  • Jayathi Y. Murthy
    • 3
  1. 1.G. W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.School of Mechanical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations