Skip to main content

Subgame Consistent Cooperative Provision of Public Goods Under Accumulation and Payoff Uncertainties

  • Chapter

Part of the book series: Dynamic Modeling and Econometrics in Economics and Finance ((DMEF,volume 16))

Abstract

The provision of public goods constitutes a classic case of market failure which calls for cooperative optimization. However, cooperation cannot be sustainable unless there is guarantee that the agreed-upon optimality principle can be maintained throughout the planning duration. This paper derives subgame consistent cooperative solutions for public goods provision by asymmetric agents in a discrete-time dynamic game framework with uncertainties in stock accumulation dynamics and future payoff structures. In particular, subgame consistency ensures that as the game proceeds agents are guided by the same optimality principle and hence they do not possess incentives to deviate from the previously adopted optimal behavior. A “payoff distribution procedure” leading to subgame-consistent solutions is derived and an illustration is presented. This is the first time that subgame consistent cooperative provision of public goods with uncertainties in stock dynamics and future payoffs is analyzed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Başar, T., & Olsder, G. J. (1995). Dynamic noncooperative game theory. New York: Academic Press.

    Google Scholar 

  • Bergstrom, T., Blume, C., & Varian, H. (1986). On the private provision of public goods. Journal of Public Economics, 29, 25–49.

    Article  Google Scholar 

  • Chamberlin, J. (1974). Provision of collective goods as a function of group size. American Political Science Review, 65, 707–716.

    Article  Google Scholar 

  • Dockner, E., Jorgensen, S., Van Long, N., & Sorger, G. (2000). Differential games in economics and management science. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Fershtman, C., & Nitzan, S. (1991). Dynamic voluntary provision of public goods. European Economic Review, 35, 1057–1067.

    Article  Google Scholar 

  • Gradstein, M., & Nitzan, S. (1989). Binary participation and incremental provision of public goods. Social Choice and Welfare, 7, 171–192.

    Article  Google Scholar 

  • McGuire, M. (1974). Group size, group homogeneity, and the aggregate provision of a pure public good under Cournot behavior. Public Choice, 18, 107–126.

    Article  Google Scholar 

  • Petrosyan, L. A., & Yeung, D. W. K. (2007). Subgame-consistent cooperative solutions in randomly-furcating stochastic differential games. Mathematical and Computer Modelling, 45(Special issue on Lyapunov’s methods in stability and control), 1294–1307.

    Article  Google Scholar 

  • Wang, W. K., & Ewald, C. O. (2010). Dynamic voluntary provision of public goods with uncertainty: a stochastic differential game model. Decisions in Economics and Finance, 3, 97–116.

    Article  Google Scholar 

  • Wirl, F. (1996). Dynamic voluntary provision of public goods: extension to nonlinear strategies. European Journal of Political Economy, 12, 555–560.

    Article  Google Scholar 

  • Yeung, D. W. K. (2001). Infinite horizon stochastic differential games with branching payoffs. Journal of Optimization Theory and Applications, 111, 445–460.

    Article  Google Scholar 

  • Yeung, D. W. K. (2003). Randomly furcating stochastic differential games. In L. A. Petrosyan & D. W. K. Yeung (Eds.), ICM millennium lectures on games (pp. 107–126). Berlin: Springer.

    Chapter  Google Scholar 

  • Yeung, D. W. K., & Petrosyan, L. A. (2004). Subgame consistent cooperative solution in stochastic differential games. Journal of Optimization Theory and Applications, 120(3), 651–666.

    Article  Google Scholar 

  • Yeung, D. W. K., & Petrosyan, L. A. (2013a). Subgame consistent cooperative provision of public goods. Dynamic Games and Applications, 3(3), 419–442.

    Article  Google Scholar 

  • Yeung, D. W. K., & Petrosyan, L. A. (2013b). Subgame-consistent cooperative solutions in randomly furcating stochastic dynamic games. Mathematical and Computer Modelling, 57(3–4), 976–991.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the HKSYU Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. K. Yeung .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof of Proposition 1

Consider first the last stage, that is stage 3, when \(\theta_{3}^{\sigma _{3}}\) occurs. Invoking that

$$\begin{aligned} &V^{(\sigma_3 )i} (3,K) = \bigl[A_3^{ (\sigma_3 ) i} K + C_3^{ (\sigma_3 ) i} \bigr] (1+r)^{-2} \quad\mbox{and}\\ &V^{ (\sigma_4 ) i} (4, K_4 ) = \bigl(q^i K + m^i \bigr) (1+r)^{-3} \end{aligned}$$

from Proposition 1, the condition governing t=3 in equation (30) becomes

$$\begin{aligned} & \bigl[A_3^{ (\sigma_3 ) i} K + C_3^{ (\sigma_3 ) i} \bigr] (1+r)^{-2} \\ &\quad =\max_{I_3^i} \Biggl\{ \bigl[ \alpha_3^{ (\sigma_3 ) i} K - c_3^{ (\sigma_3 ) i} \bigl(I_3^i\bigr)^2 \bigr] (1+r)^{-2} \\ &\quad\quad{} +\sum_{y=1}^3 \gamma_3^y \sum_{\sigma_4 = 1}^4 \lambda_4^{\sigma_4 } \Biggl[ q^i \Biggl( K + \sum _{\substack{j = 1\\ j \ne i}}^4 \phi_3^{ (\sigma_3 ) j^*} (K) + I_3^i - \delta K + \vartheta_3^y \Biggr) +m^i \Biggr] \\ &\quad\quad{}\times (1+r)^{-3} \Biggr\} , \quad \mbox{for } i\in N. \end{aligned}$$
(39)

Performing the indicated maximization in (39) yields the game equilibrium strategies in stage 3 as:

$$ \phi_3^{ (\sigma_3 ) i^*} (K) = \frac{q^i (1+r)^{-1}}{ 2 c_3^{ (\sigma_3 ) i}},\quad \mbox{for } i\in N. $$
(40)

Substituting (40) into (39) yields:

$$\begin{aligned} & \bigl[A_3^{ (\sigma_3 ) i} K + C_3^{ (\sigma_3 ) i} \bigr] \\ &\quad= \alpha_3^{ (\sigma_3 ) i} K - \frac{ (q^i )^2 (1+r)^{-2}}{ 4 c_3^{ (\sigma_3 ) i} } \\ &\quad\quad {} +\sum_{y=1}^3 \gamma_3^y \Biggl[ q^i \Biggl( K + \sum_{j = 1}^n \frac{q^j (1+r)^{-1}}{2 c_3^{ (\sigma_3 ) j}} - \delta K + \vartheta_t^y \Biggr) + m^i \Biggr] \\ &\quad\quad{}\times(1+r)^{-1}, \quad\mbox{for } i \in N. \end{aligned}$$
(41)

Note that both sides of equation (41) are linear expressions of K. For (41) to hold it is required that:

$$ \begin{aligned} & A_3^{ (\sigma_3 ) i} = \alpha_3^{ (\sigma_3 ) i} + q^i (1-\delta) (1+r)^{-1} ,\quad \mbox{and} \\ & C_3^{ (\sigma_3 ) i} = - \frac{ (q^i )^2 (1+r)^{-2}}{ 4 c_3^{ (\sigma_3 ) i}} \\ &\hphantom{C_3^{ (\sigma_3 ) i} =} {} + \Biggl[ q^i \sum_{j = 1}^n \frac{q^j (1+r)^{-1}}{2 c_3^{ (\sigma_3 ) j}} + q^i \varpi_3 + m^i \Biggr] (1+r)^{-1}, \quad\mbox{for } i \in N. \end{aligned} $$
(42)

Now we proceed to stage 2, using \(V^{ (\sigma_{3} ) i} (3, K)= [A_{3}^{ (\sigma_{3} ) i} K + C_{3}^{ (\sigma_{3} ) i} ] (1+r)^{-2} \) with \(A_{3}^{ (\sigma_{3} ) i}\) and \(C_{3}^{ (\sigma_{3} ) i}\) given in (42), the conditions in equation (30) become

$$\begin{aligned} & \bigl[A_2^{ (\sigma_2 ) i} K + C_2^{ (\sigma_2 ) i} \bigr] (1+r)^{-1} \\ &\quad= \max_{I_2^i} \Biggl\{ \bigl[ \alpha_2^{ (\sigma_2 )i} K - c_2^{ (\sigma_2 ) i} \bigl(I_2^i \bigr)^2 \bigr] (1+r)^{-1} \\ &\quad\quad {} + \sum_{y = 1}^3 \gamma_2^y \sum_{\sigma_3 = 1}^4 \lambda_3^{\sigma_3 } \Biggl[ A_3^{ (\sigma_3 ) i} \Biggl( K + \mathop{\sum_{j = 1}}_{ j \ne i}^n \phi_2^{ (\sigma_2 ) j^*} (K) + I_2^i - \delta K + \vartheta_2^y \Biggr) \\ &\quad\quad{} + C_3^{ (\sigma_3 ) i} \Biggr] (1+r)^{-2} \Biggr\} , \quad \mbox{for } i\in N. \end{aligned}$$
(43)

Performing the indicated maximization in (43) yields the game equilibrium strategies in stage 2 as:

$$ \phi_2^{ (\sigma_2 ) i^*} (K) = \sum _{\sigma_3 = 1}^4 \lambda_3^{\sigma_3} \frac{A_3^{ (\sigma_3 ) i} (1+r)^{-1} }{ 2 c_2^{ (\sigma_2 ) i}},\quad \mbox{for } i\in N. $$
(44)

Substituting (44) into (43) yields:

$$\begin{aligned} & \bigl[A_2^{ (\sigma_2 ) i} K + C_2^{ (\sigma_2 ) i} \bigr] \\ &\quad = \alpha_2^{ (\sigma_2 ) i} K - \frac{1}{4 c_2^{ (\sigma _2 ) i} } \Biggl( \sum_{\sigma_3 = 1}^4 \lambda_3^{\sigma_3 } A_3^{ (\sigma_3 ) i} (1+r)^{-1} \Biggr)^2 \\ &\quad\quad {} +\sum_{y = 1}^3 \gamma_2^y \sum_{\sigma_3 = 1}^4 \lambda_3^{\sigma_3} \Biggl[ A_3^{ (\sigma_3 ) i} \Biggl( K + \sum_{j = 1}^n \sum _{\hat{\sigma}_3 = 1}^4 \lambda_3^{\hat{\sigma}_3} \frac{A_3^{ (\hat{\sigma}_3 ) j} (1+r)^{-1}}{ 2 c_2^{ (\sigma_2 ) j}} -\delta K + \vartheta_2^y \Biggr) \\ &\quad\quad {} + C_3^{ (\sigma_3 ) i} \Biggr] (1+r)^{-1} \quad\mbox{for } i\in N. \end{aligned}$$
(45)

Both sides of equation (45) are linear expressions of K. For (45) to hold it is required that:

$$ \begin{aligned} &A_2^{ ( \sigma_2 ) i} = \alpha_2^{ ( \sigma_2 ) i} + \sum_{\sigma_3 = 1}^4 \lambda_3^{\sigma_3} A_3^{ ( \sigma_3 ) i} (1-\delta) (1+r)^{-1},\quad \mbox{and} \\ &C_2^{ (\sigma_2 ) i} = -\frac{1}{4 c_2^{ (\sigma_2 ) i} } \Biggl( \sum _{\sigma_3 = 1}^4 \lambda_3^{\sigma_3 } A_3^{ (\sigma_3 ) i} (1+r)^{-1} \Biggr)^2 \\ & \hphantom{C_2^{ (\sigma_2 ) i} =} {} +\sum_{\sigma_3 = 1}^4 \lambda_3^{\sigma_3} \Biggl[ A_3^{ (\sigma_3 ) i} \Biggl( \sum_{j = 1}^n \sum _{\hat{\sigma}_3 = 1}^4 \lambda_3^{\hat{\sigma}_3 } \frac{A_3^{ (\hat{\sigma}_3 ) j} (1+r)^{-1}}{2 c_2^{ (\sigma_2 ) j}} + \varpi_2 \Biggr) \\ & \hphantom{C_2^{ (\sigma_2 ) i} =}{}+ C_3^{ (\sigma_3 ) i} \Biggr] (1+r)^{-1}, \quad\mbox{for } i\in N. \end{aligned} $$
(46)

Now we proceed to stage 1, using \(V^{ (\sigma_{2} ) i} (2, K)= [A_{2}^{ (\sigma_{2} ) i} K + C_{2}^{ (\sigma_{2} ) i} ] (1+r)^{-1} \) with \(A_{2}^{ (\sigma_{2} ) i} \) and \(C_{2}^{ (\sigma_{2} ) i} \) given in (46), the conditions in equation (30) become

$$\begin{aligned} & \bigl[A_1^{ (\sigma_1 ) i} K + C_1^{ (\sigma_1 ) i} \bigr] \\ &\quad=\max_{I_1^i } \Biggl\{ \bigl[\alpha_1^{ (\sigma_1 ) i} K - c_1^{ (\sigma_1 ) i} \bigl( I_1^i \bigr)^2 \bigr] \\ &\quad\quad{} + \sum_{y = 1}^3 \gamma_1^y \sum_{\sigma_2 = 1}^4 \lambda_2^{\sigma_2} \Biggl[A_2^{ (\sigma_2 ) i} \Biggl( K + \mathop{\sum_{j = 1 }}_{ j \ne i} ^n \phi_1^{ (\sigma_1 ) j^*} (K) + I_1^i - \delta K + \vartheta_1^y \Biggr) \\ &\quad\quad{} + C_2^{ (\sigma_2 ) i} \Biggr] (1+r)^{-1} \Biggr\} ,\quad \mbox{for } i\in N. \end{aligned}$$
(47)

Performing the indicated maximization in (47) yields the game equilibrium strategies in stage 1 as:

$$ \phi_1^{ (\sigma_1 ) i^*} (K) = \sum _{\sigma_2 = 1}^4 \lambda_2^{\sigma_2} \frac{A_2^{ (\sigma_2 ) i} (1+r)^{-1} }{ 2 c_1^{ (\sigma_1 ) i}}, \quad\mbox{for } i\in N. $$
(48)

Substituting (48) into (47) yields:

$$\begin{aligned} &\bigl[A_1^{ (\sigma_1 ) i} K + C_1^{ (\sigma_1 ) i} \bigr] \\ &\quad= \alpha_1^{ (\sigma_1 ) i} K - \frac{1}{4 c_1^{ (\sigma _1 ) i} } \Biggl( \sum_{\sigma_2 = 1}^4 \lambda_2^{\sigma_2} A_2^{ (\sigma_2 ) i} (1+r)^{-1} \Biggr)^2 \\ &\quad\quad {} +\sum_{y = 1}^3 \gamma_1^y \sum_{\sigma_2 = 1}^4 \lambda_2^{\sigma_2} \Biggl[ A_2^{ (\sigma_2 ) i} \Biggl( K+\sum_{j = 1}^n \sum _{\hat{\sigma}_2 = 1}^4 \lambda_2^{\hat{\sigma}_2} \frac{A_2^{ (\hat{\sigma}_2 ) j} (1+r)^{-1} }{2c_1^{ (\sigma_1 ) j}} - \delta K + \vartheta_1^y \Biggr) \\ &\quad\quad {} + C_2^{ (\sigma_2 ) i} \Biggr] (1+r)^{-1}, \quad\mbox{for } i\in N. \end{aligned}$$
(49)

Both sides of equation (49) are linear expressions of K. For (49) to hold it is required that:

$$\begin{aligned} &A_1^{ (\sigma_1 ) i} = \alpha_1^{ (\sigma_1 ) i} + \sum_{\sigma_2 = 1}^4 \lambda_2^{\sigma_2} A_2^{ (\sigma_2 ) i} (1-\delta) (1+r)^{-1}, \quad\mbox{and} \\ &C_1^{ (\sigma_1 ) i} = - \frac{1}{4 c_1^{ (\sigma_1 ) i}} \Biggl( \sum _{\sigma_{1} = 1}^4 \lambda_2^{\sigma_2} A_2^{ (\sigma_2 ) i} (1+r)^{-1} \Biggr)^2 \\ & \hphantom{C_1^{ (\sigma_1 ) i} =}{} +\sum_{\sigma_2 = 1}^4 \lambda_2^{\sigma_2} \Biggl[ A_2^{ (\sigma_2 ) i} \Biggl( \sum_{j = 1}^n \sum _{\hat{\sigma}_2 = 1}^4 \lambda_2^{\hat{\sigma}_2} \frac{A_2^{ (\hat{\sigma}_2 ) j} (1+r)^{-1} }{ 2c_1^{ (\sigma_1 ) j}} + \varpi_1 \Biggr) \\ & \hphantom{C_1^{ (\sigma_1 ) i} =}{} + C_2^{ (\sigma _2 ) i} \Biggr] (1+r)^{-1}, \quad \mbox{for } i\in N. \end{aligned}$$

Hence Proposition 1 follows. □

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yeung, D.W.K., Petrosyan, L.A. (2014). Subgame Consistent Cooperative Provision of Public Goods Under Accumulation and Payoff Uncertainties. In: Haunschmied, J., Veliov, V., Wrzaczek, S. (eds) Dynamic Games in Economics. Dynamic Modeling and Econometrics in Economics and Finance, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54248-0_13

Download citation

Publish with us

Policies and ethics