Skip to main content

Statistical Concurrent Non-malleable Zero Knowledge

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNSC,volume 8349)


The notion of Zero Knowledge introduced by Goldwasser, Micali and Rackoff in STOC 1985 is fundamental in Cryptography. Motivated by conceptual and practical reasons, this notion has been explored under stronger definitions. We will consider the following two main strengthened notions.

Statistical Zero Knowledge: here the zero-knowledge property will last forever, even in case in future the adversary will have unlimited power.

Concurrent Non-Malleable Zero Knowledge: here the zeroknowledge property is combined with non-transferability and the adversary fails in mounting a concurrent man-in-the-middle attack aiming at transferring zero-knowledge proofs/arguments.

Besides the well-known importance of both notions, it is still unknown whether one can design a zero-knowledge protocol that satisfies both notions simultaneously.

In this work we shed light on this question in a very strong sense. We show a statistical concurrent non-malleable zero-knowledge argument system for \(\mathcal{NP}\) with a black-box simulator-extractor.


  • Random String
  • Commitment Scheme
  • Negligible Probability
  • Zero Knowledge
  • Round Complexity

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero knowledge. In: FOCS, p. 345 (2006); full version available on eprint arhive

    Google Scholar 

  2. Bellare, M., Micali, S., Ostrovsky, R.: The (true) complexity of statistical zero knowledge. In: STOC, pp. 494–502 (1990)

    Google Scholar 

  3. Catalano, D., Visconti, I.: Hybrid trapdoor commitments and their applications. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 298–310. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  4. Catalano, D., Visconti, I.: Hybrid commitments and their applications to zero-knowledge proof systems. Theor. Comput. Sci. 374(1-3), 229–260 (2007)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Damgård, I., Groth, J.: Non-interactive and reusable non-malleable commitment schemes. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing, San Diego, CA, USA, June 9-11, pp. 426–437. ACM (2003)

    Google Scholar 

  6. Damgård, I., Nielsen, J.B.: Perfect hiding and perfect binding universally composable commitment schemes with constant expansion factor. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  7. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract). In: STOC, pp. 542–552 (1991)

    Google Scholar 

  8. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000); preliminary version in STOC 1991

    Google Scholar 

  9. Goldreich, O., Sahai, A., Vadhan, S.P.: Honest-verifier statistical zero-knowledge equals general statistical zero-knowledge. In: STOC, pp. 399–408 (1998)

    Google Scholar 

  10. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. In: Proc. 17th STOC, pp. 291–304 (1985)

    Google Scholar 

  11. Goyal, V., Lin, H., Pandey, O., Pass, R., Sahai, A.: Round-efficient concurrently composable secure computation via a robust extraction lemma. IACR Cryptology ePrint Archive 2012, 652 (2012)

    Google Scholar 

  12. Goyal, V., Moriarty, R., Ostrovsky, R., Sahai, A.: Concurrent statistical zero-knowledge arguments for np from one way functions. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 444–459. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  13. Haitner, I., Nguyen, M.H., Ong, S.J., Reingold, O., Vadhan, S.P.: Statistically hiding commitments and statistical zero-knowledge arguments from any one-way function. SIAM J. Comput. 39(3), 1153–1218 (2009)

    CrossRef  MATH  MathSciNet  Google Scholar 

  14. Halevi, S., Micali, S.: Practical and provably-secure commitment schemes from collision-free hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 201–215. Springer, Heidelberg (1996)

    Google Scholar 

  15. Lin, H., Pass, R.: Non-malleability amplification. In: STOC, pp. 189–198 (2009)

    Google Scholar 

  16. Lin, H., Pass, R.: Concurrent non-malleable zero knowledge with adaptive inputs. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 274–292. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  17. Lin, H., Pass, R., Tseng, W.-L.D., Venkitasubramaniam, M.: Concurrent non-malleable zero knowledge proofs. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 429–446. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  18. Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commitments from any one-way function. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 571–588. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  19. Mahmoody, M., Xiao, D.: Languages with efficient zero-knowledge pcps are in szk. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 297–314. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  20. Micciancio, D., Ong, S.J., Sahai, A., Vadhan, S.: Concurrent zero knowledge without complexity assumptions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 1–20. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  21. Okamoto, T.: On relationships between statistical zero-knowledge proofs. J. Comput. Syst. Sci. 60(1), 47–108 (2000)

    CrossRef  MATH  Google Scholar 

  22. Ostrovsky, R., Pandey, O., Visconti, I.: Efficiency preserving transformations for concurrent non-malleable zero knowledge. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 535–552. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  23. Ostrovsky, R., Persiano, G., Visconti, I.: Constant-round concurrent non-malleable zero knowledge in the bare public-key model. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 548–559. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  24. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarithmic round-complexity. In: Proc. 43rd FOCS (2002)

    Google Scholar 

  25. Sahai, A., Vadhan, S.P.: A complete problem for statistical zero knowledge. J. ACM 50(2), 196–249 (2003)

    CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 International Association for Cryptologic Research

About this paper

Cite this paper

Orlandi, C., Ostrovsky, R., Rao, V., Sahai, A., Visconti, I. (2014). Statistical Concurrent Non-malleable Zero Knowledge. In: Lindell, Y. (eds) Theory of Cryptography. TCC 2014. Lecture Notes in Computer Science, vol 8349. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54241-1

  • Online ISBN: 978-3-642-54242-8

  • eBook Packages: Computer ScienceComputer Science (R0)