Skip to main content

Constant-Round Black-Box Construction of Composable Multi-Party Computation Protocol

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNSC,volume 8349)

Abstract

We present the first general MPC protocol that satisfies the following: (1) the construction is black-box, (2) the protocol is universally composable in the plain model, and (3) the number of rounds is constant. The security of our protocol is proven in angel-based UC security under the assumption of the existence of one-way functions that are secure against sub-exponential-time adversaries and constant-round semi-honest oblivious transfer protocols that are secure against quasi-polynomial-time adversaries. We obtain the MPC protocol by constructing a constant-round CCA-secure commitment scheme in a black-box way under the assumption of the existence of one-way functions that are secure against sub-exponential-time adversaries. To justify the use of such a sub-exponential hardness assumption in obtaining our constant-round CCA-secure commitment scheme, we show that if black-box reductions are used, there does not exist any constant-round CCA-secure commitment scheme under any falsifiable polynomial-time hardness assumptions.

Keywords

  • Commitment Scheme
  • Oblivious Transfer
  • Hiding Property
  • Hardness Assumption
  • Round Complexity

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Barak, B., Sahai, A.: How to play almost any mental game over the net—concurrent composition via super-polynomial simulation. In: FOCS, pp. 543–552 (2005)

    Google Scholar 

  2. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS, pp. 136–145 (2001)

    Google Scholar 

  3. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  4. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge. In: STOC, pp. 235–244 (2000)

    Google Scholar 

  5. Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-box concurrent zero-knowledge requires (almost) logarithmically many rounds. SIAM J. Comput. 32(1), 1–47 (2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally composable two-party computation without set-up assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 68–86. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  7. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the plain model from standard assumptions. In: FOCS, pp. 541–550 (2010)

    Google Scholar 

  8. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: STOC, pp. 494–503 (2002)

    Google Scholar 

  9. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Black-box construction of a non-malleable encryption scheme from any semantically secure one. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 427–444. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  10. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Simple, black-box constructions of adaptively secure protocols. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 387–402. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  11. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Garg, S., Goyal, V., Jain, A., Sahai, A.: Concurrently secure computation in constant rounds. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 99–116. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  13. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: STOC, pp. 99–108 (2011)

    Google Scholar 

  14. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC. pp. 218–229 (1987)

    Google Scholar 

  15. Goyal, V.: Constant round non-malleable protocols using one way functions. In: STOC, pp. 695–704 (2011)

    Google Scholar 

  16. Goyal, V.: Non-black-box simulation in the fully concurrent setting. In: STOC, pp. 221–230 (2013)

    Google Scholar 

  17. Goyal, V., Lin, H., Pandey, O., Pass, R., Sahai, A.: Round-efficient concurrently composable secure computation via a robust extraction lemma. Cryptology ePrint Archive, Report 2012/652 (2012), http://eprint.iacr.org/

  18. Haitner, I.: Semi-honest to malicious oblivious transfer - the black-box way. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 412–426. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  19. Haitner, I., Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions of protocols for secure computation. SIAM J. Comput. 40(2), 225–266 (2011)

    CrossRef  MATH  MathSciNet  Google Scholar 

  20. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for secure computation. In: STOC, pp. 99–108 (2006)

    Google Scholar 

  21. Lin, H.: Concurrent Security. Ph.D. thesis, Cornell University (2011)

    Google Scholar 

  22. Lin, H., Pass, R.: Non-malleability amplification. In: STOC, pp. 189–198 (2009)

    Google Scholar 

  23. Lin, H., Pass, R.: Black-box constructions of composable protocols without set-up. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 461–478. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  24. Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commitments from any one-way function. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 571–588. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  25. Malkin, T., Moriarty, R., Yakovenko, N.: Generalized environmental security from number theoretic assumptions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 343–359. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  26. Micciancio, D., Ong, S.J., Sahai, A., Vadhan, S.: Concurrent zero knowledge without complexity assumptions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 1–20. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  27. Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2), 151–158 (1991)

    CrossRef  MATH  Google Scholar 

  28. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  29. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  30. Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest majority. In: STOC, pp. 232–241 (2004)

    Google Scholar 

  31. Pass, R., Lin, H., Venkitasubramaniam, M.: A unified framework for UC from only OT. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 699–717. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  32. Pass, R., Venkitasubramaniam, M.: On constant-round concurrent zero-knowledge. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 553–570. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  33. Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  34. Pass, R., Wee, H.: Constant-round non-malleable commitments from sub-exponential one-way functions. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 638–655. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  35. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarithmic round-complexity. In: FOCS, pp. 366–375 (2002)

    Google Scholar 

  36. Prabhakaran, M., Sahai, A.: New notions of security: Achieving aniversal composability without trusted setup. In: STOC, pp. 242–251 (2004)

    Google Scholar 

  37. Wee, H.: Black-box, round-efficient secure computation via non-malleability amplification. In: FOCS, pp. 531–540 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 International Association for Cryptologic Research

About this paper

Cite this paper

Kiyoshima, S., Manabe, Y., Okamoto, T. (2014). Constant-Round Black-Box Construction of Composable Multi-Party Computation Protocol. In: Lindell, Y. (eds) Theory of Cryptography. TCC 2014. Lecture Notes in Computer Science, vol 8349. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54242-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54242-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54241-1

  • Online ISBN: 978-3-642-54242-8

  • eBook Packages: Computer ScienceComputer Science (R0)