Skip to main content

On the Power of Public-Key Encryption in Secure Computation

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNSC,volume 8349)

Abstract

We qualitatively separate semi-honest secure computation of nontrivial secure-function evaluation (SFE) functionalities from existence of keyagreement protocols. Technically, we show the existence of an oracle (namely, PKE-oracle) relative to which key-agreement protocols exist; but it is useless for semi-honest secure realization of symmetric 2-party (deterministic finite) SFE functionalities, i.e. any SFE which can be securely performed relative to this oracle can also be securely performed in the plain model.

Our main result has following consequences.

  • There exists an oracle which is useful for some 3-party deterministic SFE; but useless for semi-honest secure realization of any general 2-party (deterministic finite) SFE.

  • With respect to semi-honest, standalone or UC security, existence of keyagreement protocols (if used in black-box manner) is only as useful as the commitment-hybrid for general 2-party (deterministic finite) SFE functionalities.

This work advances (and conceptually simplifies) several state-of-the-art techniques in the field of black-box separations:

  1. 1

    We introduce a general common-information learning algorithm (CIL) which extends the “eavesdropper” in prior work [1,2,3], to protocols whose message can depend on information gathered by the CIL so far.

  2. 2

    With the help of this CIL, we show that in a secure 2-party protocol using an idealized PKE oracle, surprisingly, decryption queries are useless.

  3. 3

    The idealized PKE oracle with its decryption facility removed can be modeled as a collection of image-testable random-oracles. We extend the analysis approaches of prior work on random oracle [1,2,4,5,3] to apply to this class of oracles. This shows that these oracles are useless for semi-honest 2-party SFE (as well as for key-agreement).

These information theoretic impossibility results can be naturally extended to yield black-box separation results (cf. [6]).

Keywords

  • Random Oracle
  • Secure Computation
  • Oblivious Transfer
  • Cipher Text
  • Decryption Oracle

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: Johnson, D.S. (ed.) STOC, pp. 44–61. ACM (1989)

    Google Scholar 

  2. Barak, B., Mahmoody-Ghidary, M.: Merkle puzzles are optimal - an O(n 2)-query attack on any key exchange from a random oracle. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 374–390. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  3. Haitner, I., Omri, E., Zarosim, H.: Limits on the usefulness of random oracles. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 437–456. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  4. Dachman-Soled, D., Lindell, Y., Mahmoody, M., Malkin, T.: On black-box complexity of optimally-fair coin-tossing. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 450–467. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  5. Mahmoody, M., Maji, H.K., Prabhakaran, M.: Limits of random oracles in secure computation. CoRR abs/1205.3554 (2012); To appear in ITCS 2014

    Google Scholar 

  6. Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between cryptographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  7. Maji, H.K., Prabhakaran, M., Rosulek, M.: Cryptographic complexity classes and computational intractability assumptions. In: Yao, A.C.C. (ed.) ICS, pp. 266–289. Tsinghua University Press (2010)

    Google Scholar 

  8. Kushilevitz, E.: Privacy and communication complexity. In: [33], pp. 416–421.

    Google Scholar 

  9. Beaver, D.: Perfect privacy for two-party protocols. In: Feigenbaum, J., Merritt, M. (eds.) Proceedings of DIMACS Workshop on Distributed Computing and Cryptography, vol. 2, pp. 65–77. American Mathematical Society (1989)

    Google Scholar 

  10. Maji, H.K., Prabhakaran, M., Rosulek, M.: Complexity of multi-party computation problems: The case of 2-party symmetric secure function evaluation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 256–273. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  11. Maji, H.K., Prabhakaran, M., Rosulek, M.: A unified characterization of completeness and triviality for secure function evaluation. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 40–59. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  12. Haitner, I., Omri, E., Zarosim, H.: On the power of random oracles. Electronic Colloquium on Computational Complexity (ECCC) 19, 129 (2012)

    Google Scholar 

  13. Simon, D.R.: Finding collisions on a one-way street: Can secure hash functions be based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  14. Gertner, Y., Malkin, T., Reingold, O.: On the impossibility of basing trapdoor functions on trapdoor predicates. In: FOCS, pp. 126–135 (2001)

    Google Scholar 

  15. Boneh, D., Papakonstantinou, P.A., Rackoff, C., Vahlis, Y., Waters, B.: On the impossibility of basing identity based encryption on trapdoor permutations. In: FOCS, pp. 283–292. IEEE Computer Society (2008)

    Google Scholar 

  16. Katz, J., Schröder, D., Yerukhimovich, A.: Impossibility of blind signatures from one-way permutations. In: [34], pp. 615–629

    Google Scholar 

  17. Matsuda, T., Matsuura, K.: On black-box separations among injective one-way functions. In: [34], pp. 597–614

    Google Scholar 

  18. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The relationship between public key encryption and oblivious transfer. In: FOCS, pp. 325–335. IEEE Computer Society (2000)

    Google Scholar 

  19. Kim, J.H., Simon, D.R., Tetali, P.: Limits on the efficiency of one-way permutation-based hash functions. In: FOCS, pp. 535–542 (1999)

    Google Scholar 

  20. Gennaro, R., Gertner, Y., Katz, J., Trevisan, L.: Bounds on the efficiency of generic cryptographic constructions. SIAM J. Comput. 35(1), 217–246 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  21. Lin, H., Trevisan, L., Wee, H.: On hardness amplification of one-way functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 34–49. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  22. Haitner, I., Hoch, J.J., Reingold, O., Segev, G.: Finding collisions in interactive protocols - a tight lower bound on the round complexity of statistically-hiding commitments. In: FOCS, pp. 669–679. IEEE Computer Society (2007)

    Google Scholar 

  23. Barak, B., Mahmoody, M.: Lower bounds on signatures from symmetric primitives. In: FOCS: IEEE Symposium on Foundations of Computer Science, FOCS (2007)

    Google Scholar 

  24. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based cryptography (extended abstract). In: [34], pp. 230–235

    Google Scholar 

  25. Ostrovsky, R.: One-way functions, hard on average problems, and statistical zero-knowledge proofs. In: Structure in Complexity Theory Conference, pp. 133–138 (1991)

    Google Scholar 

  26. Ostrovsky, R., Wigderson, A.: One-way functions are essential for non-trivial zero-knowledge. Technical Report TR-93-073, International Computer Science Institute, Preliminary version in Proc. 2nd Israeli Symp. on Theory of Computing and Systems, 1993, pp. 3–17, Berkeley, CA (November 1993)

    Google Scholar 

  27. Haitner, I.: Semi-honest to malicious oblivious transfer - the black-box way. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 412–426. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  28. Haitner, I., Nguyen, M.H., Ong, S.J., Reingold, O., Vadhan, S.P.: Statistically hiding commitments and statistical zero-knowledge arguments from any one-way function. SIAM J. Comput. 39(3), 1153–1218 (2009)

    CrossRef  MATH  MathSciNet  Google Scholar 

  29. Impagliazzo, R.: A personal view of average-case complexity. In: Structure in Complexity Theory Conference, pp. 134–147 (1995)

    Google Scholar 

  30. Lindell, Y., Omri, E., Zarosim, H.: Completeness for symmetric two-party functionalities - revisited. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 116–133. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  31. Haitner, I.: Personal communication (January 21, 2013)

    Google Scholar 

  32. Mahmoody, M., Maji, H.K., Prabhakaran, M.: On the power of public-key encryption in secure computation. Electronic Colloquium on Computational Complexity (ECCC) 20, 137 (2013)

    Google Scholar 

  33. 30th Annual Symposium on Foundations of Computer Science, Research Triangle Park, North Carolina, USA, 30 October-1 November (1989); In: FOCS. IEEE (1989)

    Google Scholar 

  34. Ishai, Y. (ed.): TCC 2011. LNCS, vol. 6597. Springer, Heidelberg (2011)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 International Association for Cryptologic Research

About this paper

Cite this paper

Mahmoody, M., Maji, H.K., Prabhakaran, M. (2014). On the Power of Public-Key Encryption in Secure Computation. In: Lindell, Y. (eds) Theory of Cryptography. TCC 2014. Lecture Notes in Computer Science, vol 8349. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54242-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54242-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54241-1

  • Online ISBN: 978-3-642-54242-8

  • eBook Packages: Computer ScienceComputer Science (R0)