Modelling of Surface Runoff Using 2D P Colonies

  • Luděk Cienciala
  • Lucie Ciencialová
  • Miroslav Langer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8340)


We continue the investigation of 2D P colonies introduced as a class of abstract computing devices composed of independent agents, acting and evolving in a shared 2D environment where the agents are located. Agents have limited information about the contents of the environment where they can move in four directions. In this paper we continue the research of modelling surface runoff in 2D P colonies. We have added information about flow direction and amount of water in sinks (places without runoff, lakes,...) to the simulation environment. The data from the simulation is compared with the data generated by simulation model of water erosion SIMWE.


Geographic Information System Rule Type Object Versus Communication Rule Antecedent Soil Moisture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cienciala, L., Ciencialová, L., Perdek, M.: 2D P colonies. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) CMC 2012. LNCS, vol. 7762, pp. 161–172. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Csuhaj-Varjú, E., Kelemen, J., Kelemenová, A., Păun, G., Vaszil, G.: Cells in environment: P colonies. Multiple-valued Logic and Soft Computing 12(3-4), 201–215 (2006)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Eastman, R.J.: IDRISI Andes Guide to GIS and Image Processing, Clerk Lab. Clerk University, Worcester, MA, USA (2006)Google Scholar
  4. 4.
    GRASS DEVELOPMENT TEAM. GRASS GIS: The world’s leading Free GIS software (1998), (May 25, 2013) (cit. July 01, 2013)
  5. 5.
    Julien, P.Y., Saghafian, B., Ogden, F.L.: Raster-based Hydrologic modeling of spatilly varied surface funoff. Water Resources Bulletin 31(3), 523–536 (1995)CrossRefGoogle Scholar
  6. 6.
    Kelemen, J., Kelemenová, A.: On P colonies, a biochemically inspired model of computation. In: Proc. of the 6th International Symposium of Hungarian Researchers on Computational Intelligence, Budapest TECH, Hungary, pp. 40–56 (2005)Google Scholar
  7. 7.
    Kelemen, J., Kelemenová, A., Păun, G.: Preview of P colonies: A biochemically inspired computing model. In: Bedau, M., et al. (eds.) Workshop and Tutorial Proceedings, Ninth International Conference on the Simulation and Synthesis of Living Systems, ALIFE IX, Boston, Mass, pp. 82–86 (2004)Google Scholar
  8. 8.
    Mitas, L., Mitasova, H., Brown, W.M., Astley, M.: Interacting fields approach for evolving spatial phenomena: application to erosion simulationfor optimized land use. In: Goodchild, M.F., et al. (eds.) Proc. of the III. Int. Conf. On Integration of Environmental Modeling and GIS, Santa Barbara, USA (1996)Google Scholar
  9. 9.
    Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61, 108–143 (2000)Google Scholar
  10. 10.
    Păun, G.: Membrane computing: An introduction. Springer, Berlin (2002)Google Scholar
  11. 11.
    Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press (2009)Google Scholar
  12. 12.
    Torrents, B.: Geosimulation. John Wiley & Sons (2004)Google Scholar
  13. 13.
    P systems web page,

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Luděk Cienciala
    • 1
    • 2
  • Lucie Ciencialová
    • 1
    • 2
  • Miroslav Langer
    • 1
    • 2
  1. 1.Institute of Computer ScienceSilesian University in OpavaCzech Republic
  2. 2.Research Institute of the IT4 Innovations Centre of ExcellenceSilesian University in OpavaCzech Republic

Personalised recommendations