Using the Formal Framework for P Systems

  • Sergey Verlan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8340)


In this article we focus on the model called the formal framework for P systems. This model provides a descriptional language powerful enough to represent in a simple way, via a strong bisimulation, most of the variants of P systems. The article presents a series of concrete examples of the application of the formal framework in order to understand, extend, compare and explain different models of P systems leading to new research ideas and open problems.


Active Membrane Formal Framework Parallel Mode Communication Graph Unbounded Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cardona, M., Colomer, M.A., Margalida, A., Palau, A., Pérez-Hurtado, I., Pérez-Jiménez, M.J., Sanuy, D.: A computational modeling for real ecosystems based on P systems. Natural Computing 10(1), 39–53 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Freund, R., Leporati, A., Mauri, G., Porreca, A.E., Verlan, S., Zandron, C.: Flattening in (Tissue) P systems. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa, A. (eds.) CMC 2013, vol. 8340, pp. 173–188. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Freund, R., Pérez-Hurtado, I., Riscos-Núñez, A., Verlan, S.: A formalization of membrane systems with dynamically evolving structures. International Journal of Computer Mathematics 90(4), 801–815 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Freund, R., Verlan, S.: A formal framework for static (Tissue) P systems. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 271–284. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Freund, R., Verlan, S.: P systems working in the k-restricted minimally parallel mode. In: International Workshop on Computing with Biomolecules, vol. 244, Wien, Austria. Oesterreichische Computer Gesellschaft, pp. 43–52 (2008)Google Scholar
  6. 6.
    Ibarra, O., Yen, H.: Deterministic catalytic systems are not universal. Theor. Comput. Sci. 363(2), 149–161 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)Google Scholar
  8. 8.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer (1997)Google Scholar
  9. 9.
    Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook Of Membrane Computing. Oxford University Press (2010)Google Scholar
  10. 10.
    Pescini, D., Besozzi, D., Mauri, G., Zandron, C.: Dynamical probabilistic P systems. International Journal of Foundations of Computer Science 17, 183–204 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Verlan, S.: A note on the probabilistic evolution for P systems. In: Proc. of Tenth Brainstorming Week on Membrane Computing Sevilla, vol. II, pp. 229–234 (2012)Google Scholar
  12. 12.
    Verlan, S.: Study of language-theoretic computational paradigms inspired by biology. Habilitation thesis, University of Paris Est (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sergey Verlan
    • 1
    • 2
  1. 1.Laboratoire d’Algorithmique, Complexité et LogiqueUniversité Paris Est – Créteil Val de MarneCréteilFrance
  2. 2.Institute of Mathematics and Computer ScienceAcademy of Sciences of MoldovaChisinauMoldova

Personalised recommendations