Skip to main content

TRPM3

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 222))

Abstract

Like most other members of the TRP family, the Trpm3 gene encodes proteins that form cation-permeable ion channels on the plasma membrane. However, TRPM3 proteins have several unique features that set them apart from the other members of this diverse family. The Trpm3 gene encodes for a surprisingly large number of isoforms generated mainly by alternative splicing. Only for two of the (at least) eight sites at which sequence diversity is generated the functional consequences have been elucidated, one leading to nonfunctional channels, the other one profoundly affecting the ionic selectivity. In the Trpm3 gene an intronic microRNA (miR-204) is co-transcribed with Trpm3. By regulating the expression of a multitude of genes, miR-204 increases the functional complexity of the Trpm3 locus. Over the past years, important progress has been made in discovering pharmacological tools to manipulate TRPM3 channel activity. These substances have facilitated the identification of endogenously expressed functional TRPM3 channels in nociceptive neurons, pancreatic beta cells, and vascular smooth muscle cells, among others. TRPM3 channels, which themselves are temperature sensitive, thus have been implicated in sensing noxious heat, in modulating insulin release, and in secretion of inflammatory cytokines. However, in many tissues where TRPM3 proteins are known to be expressed, no functional role has been identified for these channels so far. Because of the availability of adequate pharmacological and genetic tools, it is expected that future investigations on TRPM3 channels will unravel important new aspects and functions of these channels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abed E, Labelle D, Martineau C, Loghin A, Moreau R (2009) Expression of transient receptor potential (TRP) channels in human and murine osteoblast-like cells. Mol Membr Biol 26:146–158

    PubMed  CAS  Google Scholar 

  • Abramowitz J, Birnbaumer L (2007) Know thy neighbor: a survey of diseases and complex syndromes that map to chromosomal regions encoding TRP channels. Handb Exp Pharmacol: 379–408

    Google Scholar 

  • Adijanto J, Castorino JJ, Wang ZX, Maminishkis A, Grunwald GB, Philp NJ (2012) Microphthalmia-associated transcription factor (MITF) promotes differentiation of human retinal pigment epithelium (RPE) by regulating microRNAs-204/211 expression. J Biol Chem 287:20491–20503

    PubMed Central  PubMed  CAS  Google Scholar 

  • Amer MS, McKeown L, Tumova S, Liu R, Seymour VA, Wilson LA, Naylor J, Greenhalgh K, Hou B, Majeed Y, Turner P, Sedo A, O’Regan DJ, Li J, Bon RS, Porter KE, Beech DJ (2013) Inhibition of endothelial cell Ca2+ entry and transient receptor potential channels by Sigma-1 receptor ligands. Br J Pharmacol 168:1445–1455

    PubMed Central  PubMed  CAS  Google Scholar 

  • Asai Y, Holt JR, Geleoc GS (2010) A quantitative analysis of the spatiotemporal pattern of transient receptor potential gene expression in the developing mouse cochlea. J Assoc Res Otolaryngol 11:27–37

    PubMed Central  PubMed  Google Scholar 

  • Bollimuntha S, Singh BB, Shavali S, Sharma SK, Ebadi M (2005) TRPC1-mediated inhibition of 1-methyl-4-phenylpyridinium ion neurotoxicity in human SH-SY5Y neuroblastoma cells. J Biol Chem 280:2132–2140

    PubMed Central  PubMed  CAS  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    PubMed  CAS  Google Scholar 

  • Chung TK, Lau TS, Cheung TH, Yim SF, Lo KW, Siu NS, Chan LK, Yu MY, Kwong J, Doran G, Barroilhet LM, Ng AS, Wong RR, Wang VW, Mok SC, Smith DI, Berkowitz RS, Wong YF (2012) Dysregulation of microRNA-204 mediates migration and invasion of endometrial cancer by regulating FOXC1. Int J Cancer 130:1036–1045

    PubMed  CAS  Google Scholar 

  • Ciurtin C, Majeed Y, Naylor J, Sukumar P, English AA, Emery P, Beech DJ (2010) TRPM3 channel stimulated by pregnenolone sulphate in synovial fibroblasts and negatively coupled to hyaluronan. BMC Musculoskelet Disord 11:111

    PubMed Central  PubMed  Google Scholar 

  • Conte I, Carrella S, Avellino R, Karali M, Marco-Ferreres R, Bovolenta P, Banfi S (2010) miR-204 is required for lens and retinal development via Meis2 targeting. Proc Natl Acad Sci USA 107:15491–15496

    PubMed Central  PubMed  CAS  Google Scholar 

  • Courboulin A, Paulin R, Giguere NJ, Saksouk N, Perreault T, Meloche J, Paquet ER, Biardel S, Provencher S, Cote J, Simard MJ, Bonnet S (2011) Role for miR-204 in human pulmonary arterial hypertension. J Exp Med 208:535–548

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cuajungco MP, Grimm C, Heller S (2007) TRP channels as candidates for hearing and balance abnormalities in vertebrates. Biochim Biophys Acta 1772:1022–1027

    PubMed Central  PubMed  CAS  Google Scholar 

  • Deo M, Yu JY, Chung KH, Tippens M, Turner DL (2006) Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides. Dev Dyn 235:2538–2548

    PubMed  CAS  Google Scholar 

  • Drews A, Loch S, Mohr F, Rizun O, Lambert S, Oberwinkler J (2010) The fractional calcium current through fast ligand-gated TRPM channels. Acta Physiol 198(Suppl 677):P-TUE-115

    Google Scholar 

  • Drews A, Mohr F, Rizun O, Wagner TF, Dembla S, Rudolph S, Lambert S, Konrad M, Philipp SE, Behrendt M, Marchais-Oberwinkler S, Covey DF, Oberwinkler J (2014) Structural requirements of steroidal agonists of transient receptor potential melastatin 3 (TRPM3) cation channels. Br J Pharmacol 171(4):1019–1032

    PubMed  CAS  Google Scholar 

  • Düfer M, Horth K, Wagner R, Schittenhelm B, Prowald S, Wagner TF, Oberwinkler J, Lukowski R, Gonzalez FJ, Krippeit-Drews P, Drews G (2012) Bile acids acutely stimulate insulin secretion of mouse beta-cells via farnesoid X receptor activation and K(ATP) channel inhibition. Diabetes 61:1479–1489

    PubMed Central  PubMed  Google Scholar 

  • Egan TM, Khakh BS (2004) Contribution of calcium ions to P2X channel responses. J Neurosci 24:3413–3420

    PubMed  CAS  Google Scholar 

  • Erler I, Hirnet D, Wissenbach U, Flockerzi V, Niemeyer BA (2004) Ca2+-selective transient receptor potential V channel architecture and function require a specific ankyrin repeat. J Biol Chem 279:34456–34463

    PubMed  CAS  Google Scholar 

  • Erler I, Al Ansary DM, Wissenbach U, Wagner TF, Flockerzi V, Niemeyer BA (2006) Trafficking and assembly of the cold-sensitive TRPM8 channel. J Biol Chem 281:38396–38404

    PubMed  CAS  Google Scholar 

  • Everaerts W, Sepulveda MR, Gevaert T, Roskams T, Nilius B, De Ridder D (2009) Where is TRPV1 expressed in the bladder, do we see the real channel? Naunyn Schmiedebergs Arch Pharmacol 379:421–425

    PubMed  CAS  Google Scholar 

  • Fajardo O, Meseguer V, Belmonte C, Viana F (2008) TRPA1 channels: novel targets of 1,4-dihydropyridines. Channels (Austin) 2:429–438

    Google Scholar 

  • Fantozzi I, Zhang S, Platoshyn O, Remillard CV, Cowling RT, Yuan JX (2003) Hypoxia increases AP-1 binding activity by enhancing capacitative Ca2+ entry in human pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 285:L1233–L1245

    PubMed  CAS  Google Scholar 

  • Findlay VJ, Turner DP, Moussa O, Watson DK (2008) MicroRNA-mediated inhibition of prostate-derived Ets factor messenger RNA translation affects prostate-derived Ets factor regulatory networks in human breast cancer. Cancer Res 68:8499–8506

    PubMed Central  PubMed  CAS  Google Scholar 

  • Flockerzi V, Jung C, Aberle T, Meissner M, Freichel M, Philipp SE, Nastainczyk W, Maurer P, Zimmermann R (2005) Specific detection and semi-quantitative analysis of TRPC4 protein expression by antibodies. Pflugers Arch 451:81–86

    PubMed  CAS  Google Scholar 

  • Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, McNulty S (2006) Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res 26:159–178

    PubMed  CAS  Google Scholar 

  • Frühwald J, Camacho LJ, Dembla S, Mannebach S, Lis A, Drews A, Wissenbach U, Oberwinkler J, Philipp SE (2012) Alternative splicing of a protein domain indispensable for function of transient receptor potential melastatin 3 (TRPM3) ion channels. J Biol Chem 287:36663–36672

    PubMed Central  PubMed  Google Scholar 

  • Gabashvili IS, Sokolowski BH, Morton CC, Giersch AB (2007) Ion channel gene expression in the inner ear. J Assoc Res Otolaryngol 8:305–328

    PubMed Central  PubMed  Google Scholar 

  • Garzon R, Garofalo M, Martelli MP, Briesewitz R, Wang L, Fernandez-Cymering C, Volinia S, Liu CG, Schnittger S, Haferlach T, Liso A, Diverio D, Mancini M, Meloni G, Foa R, Martelli MF, Mecucci C, Croce CM, Falini B (2008) Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci USA 105:3945–3950

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gilliam JC, Wensel TG (2011) TRP channel gene expression in the mouse retina. Vision Res 51:2440–2452

    PubMed Central  PubMed  CAS  Google Scholar 

  • Grimm C, Kraft R, Sauerbruch S, Schultz G, Harteneck C (2003) Molecular and functional characterization of the melastatin-related cation channel TRPM3. J Biol Chem 278:21493–21501

    PubMed  CAS  Google Scholar 

  • Grimm C, Kraft R, Schultz G, Harteneck C (2005) Activation of the melastatin-related cation channel TRPM3 by D-erythro-sphingosine. Mol Pharmacol 67:798–805

    PubMed  CAS  Google Scholar 

  • Hackler L Jr, Wan J, Swaroop A, Qian J, Zack DJ (2010) MicroRNA profile of the developing mouse retina. Invest Ophthalmol Vis Sci 51:1823–1831

    PubMed Central  PubMed  Google Scholar 

  • Hardie RC, Minke B (1992) The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron 8:643–651

    PubMed  CAS  Google Scholar 

  • Harteneck C (2013) Pregnenolone sulfate: from steroid metabolite to TRP channel ligand. Molecules 18:12012–12028

    PubMed  CAS  Google Scholar 

  • Harteneck C, Gollasch M (2011) Pharmacological modulation of diacylglycerol-sensitive TRPC3/6/7 channels. Curr Pharm Biotechnol 12:35–41

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hasselblatt M, Mertsch S, Koos B, Riesmeier B, Stegemann H, Jeibmann A, Tomm M, Schmitz N, Wrede B, Wolff JE, Zheng W, Paulus W (2009) TWIST-1 is overexpressed in neoplastic choroid plexus epithelial cells and promotes proliferation and invasion. Cancer Res 69:2219–2223

    PubMed  CAS  Google Scholar 

  • Hige T, Fujiyoshi Y, Takahashi T (2006) Neurosteroid pregnenolone sulfate enhances glutamatergic synaptic transmission by facilitating presynaptic calcium currents at the calyx of Held of immature rats. Eur J Neurosci 24:1955–1966

    PubMed  Google Scholar 

  • Hochstrate P (1989) Lanthanum mimicks the trp photoreceptor mutant of Drosophila in the blowfly Calliphora. J Comp Physiol A 166:179–187

    PubMed  CAS  Google Scholar 

  • Hoffmann A, Grimm C, Kraft R, Goldbaum O, Wrede A, Nolte C, Hanisch UK, Richter-Landsberg C, Brück W, Kettenmann H, Harteneck C (2010) TRPM3 is expressed in sphingosine-responsive myelinating oligodendrocytes. J Neurochem 114:654–665

    PubMed  CAS  Google Scholar 

  • Holakovska B, Grycova L, Jirku M, Sulc M, Bumba L, Teisinger J (2012) Calmodulin and S100A1 protein interact with N terminus of TRPM3 channel. J Biol Chem 287:16645–16655

    PubMed Central  PubMed  CAS  Google Scholar 

  • Holendova B, Grycova L, Jirku M, Teisinger J (2012) PtdIns(4,5)P2 interacts with CaM binding domains on TRPM3 N-terminus. Channels (Austin) 6:479–482

    CAS  Google Scholar 

  • Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL, Tsai WT, Chen GZ, Lee CJ, Chiu CM, Chien CH, Wu MC, Huang CY, Tsou AP, Huang HD (2011) miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res 39:D163–D169

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hu H, Tian J, Zhu Y, Wang C, Xiao R, Herz JM, Wood JD, Zhu MX (2010) Activation of TRPA1 channels by fenamate nonsteroidal anti-inflammatory drugs. Pflugers Arch 459:579–592

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hughes S, Pothecary CA, Jagannath A, Foster RG, Hankins MW, Peirson SN (2012) Profound defects in pupillary responses to light in TRPM-channel null mice: a role for TRPM channels in non-image-forming photoreception. Eur J Neurosci 35:34–43

    PubMed  Google Scholar 

  • Humphray SJ, Oliver K, Hunt AR, Plumb RW, Loveland JE, Howe KL, Andrews TD, Searle S, Hunt SE, Scott CE, Jones MC, Ainscough R, Almeida JP, Ambrose KD, Ashwell RI, Babbage AK, Babbage S, Bagguley CL, Bailey J, Banerjee R, Barker DJ, Barlow KF, Bates K, Beasley H, Beasley O, Bird CP, Bray-Allen S, Brown AJ, Brown JY, Burford D, Burrill W, Burton J, Carder C, Carter NP, Chapman JC, Chen Y, Clarke G, Clark SY, Clee CM, Clegg S, Collier RE, Corby N, Crosier M, Cummings AT, Davies J, Dhami P, Dunn M, Dutta I, Dyer LW, Earthrowl ME, Faulkner L, Fleming CJ, Frankish A, Frankland JA, French L, Fricker DG, Garner P, Garnett J, Ghori J, Gilbert JG, Glison C, Grafham DV, Gribble S, Griffiths C, Griffiths-Jones S, Grocock R, Guy J, Hall RE, Hammond S, Harley JL, Harrison ES, Hart EA, Heath PD, Henderson CD, Hopkins BL, Howard PJ, Howden PJ, Huckle E, Johnson C, Johnson D, Joy AA, Kay M, Keenan S, Kershaw JK, Kimberley AM, King A, Knights A, Laird GK, Langford C, Lawlor S, Leongamornlert DA, Leversha M, Lloyd C, Lloyd DM, Lovell J, Martin S, Mashreghi-Mohammadi M, Matthews L, McLaren S, McLay KE, McMurray A, Milne S, Nickerson T, Nisbett J, Nordsiek G, Pearce AV, Peck AI, Porter KM, Pandian R, Pelan S, Phillimore B, Povey S, Ramsey Y, Rand V, Scharfe M, Sehra HK, Shownkeen R, Sims SK, Skuce CD, Smith M, Steward CA, Swarbreck D, Sycamore N, Tester J, Thorpe A, Tracey A, Tromans A, Thomas DW, Wall M, Wallis JM, West AP, Whitehead SL, Willey DL, Williams SA, Wilming L, Wray PW, Young L, Ashurst JL, Coulson A, Blocker H, Durbin R, Sulston JE, Hubbard T, Jackson MJ, Bentley DR, Beck S, Rogers J, Dunham I (2004) DNA sequence and analysis of human chromosome 9. Nature 429:369–374

    PubMed Central  PubMed  CAS  Google Scholar 

  • Inoue R, Jensen LJ, Shi J, Morita H, Nishida M, Honda A, Ito Y (2006) Transient receptor potential channels in cardiovascular function and disease. Circ Res 99:119–131

    PubMed  CAS  Google Scholar 

  • Irie S, Furukawa T (2014) TRPM1. In: Nilius B, Flockerzi V (eds) Mammalian transient receptor potential (TRP) cation channels. Springer, Heidelberg

    Google Scholar 

  • Jang MK, Mierke DF, Russek SJ, Farb DH (2004) A steroid modulatory domain on NR2B controls N-methyl-D-aspartate receptor proton sensitivity. Proc Natl Acad Sci USA 101:8198–8203

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jang Y, Lee Y, Kim SM, Yang YD, Jung J, Oh U (2012) Quantitative analysis of TRP channel genes in mouse organs. Arch Pharm Res 35:1823–1830

    PubMed  CAS  Google Scholar 

  • Karali M, Peluso I, Marigo V, Banfi S (2007) Identification and characterization of microRNAs expressed in the mouse eye. Invest Ophthalmol Vis Sci 48:509–515

    PubMed  Google Scholar 

  • Karashima Y, Prenen J, Talavera K, Janssens A, Voets T, Nilius B (2010) Agonist-induced changes in Ca(2+) permeation through the nociceptor cation channel TRPA1. Biophys J 98:773–783

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kastenhuber E, Gesemann M, Mickoleit M, Neuhauss SC (2013) Phylogenetic analysis and expression of zebrafish transient receptor potential melastatin family genes. Dev Dyn 242:1236–1249

    PubMed  CAS  Google Scholar 

  • Klose C, Straub I, Riehle M, Ranta F, Krautwurst D, Ullrich S, Meyerhof W, Harteneck C (2011) Fenamates as TRP channel blockers: mefenamic acid selectively blocks TRPM3. Br J Pharmacol 162:1757–1769

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kobayashi T, Washiyama K, Ikeda K (2009) Pregnenolone sulfate potentiates the inwardly rectifying K channel Kir2.3. PLoS One 4:e6311

    PubMed Central  PubMed  Google Scholar 

  • Krol J, Busskamp V, Markiewicz I, Stadler MB, Ribi S, Richter J, Duebel J, Bicker S, Fehling HJ, Schubeler D, Oertner TG, Schratt G, Bibel M, Roska B, Filipowicz W (2010) Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell 141:618–631

    PubMed  CAS  Google Scholar 

  • Kunert-Keil C, Bisping F, Krüger J, Brinkmeier H (2006) Tissue-specific expression of TRP channel genes in the mouse and its variation in three different mouse strains. BMC Genomics 7:159

    PubMed Central  PubMed  Google Scholar 

  • Kuniba H, Yoshiura K, Kondoh T, Ohashi H, Kurosawa K, Tonoki H, Nagai T, Okamoto N, Kato M, Fukushima Y, Kaname T, Naritomi K, Matsumoto T, Moriuchi H, Kishino T, Kinoshita A, Miyake N, Matsumoto N, Niikawa N (2009) Molecular karyotyping in 17 patients and mutation screening in 41 patients with Kabuki syndrome. J Hum Genet 54:304–309

    PubMed  CAS  Google Scholar 

  • Kuster DW, Mulders J, Ten Cate FJ, Michels M, Dos Remedios CG, da Costa Martins PA, van der Velden V, Oudejans CB (2013) MicroRNA transcriptome profiling in cardiac tissue of hypertrophic cardiomyopathy patients with MYBPC3 mutations. J Mol Cell Cardiol 65:59–66

    PubMed  CAS  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T (2003) New microRNAs from mouse and human. RNA 9:175–179

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lambert S, Drews A, Rizun O, Wagner TF, Lis A, Mannebach S, Plant S, Portz M, Meissner M, Philipp SE, Oberwinkler J (2011) Transient receptor potential melastatin 1 (TRPM1) is an ion-conducting plasma membrane channel inhibited by zinc ions. J Biol Chem 286:12221–12233

    PubMed Central  PubMed  CAS  Google Scholar 

  • Langford PR, Keyes L, Hansen MD (2012) Plasma membrane ion fluxes and NFAT-dependent gene transcription contribute to c-met-induced epithelial scattering. J Cell Sci 125:4001–4013

    PubMed  CAS  Google Scholar 

  • Lee N, Chen J, Sun L, Wu S, Gray KR, Rich A, Huang M, Lin JH, Feder JN, Janovitz EB, Levesque PC, Blanar MA (2003) Expression and characterization of human transient receptor potential melastatin 3 (hTRPM3). J Biol Chem 278:20890–20897

    PubMed  CAS  Google Scholar 

  • Lee Y, Yang X, Huang Y, Fan H, Zhang Q, Wu Y, Li J, Hasina R, Cheng C, Lingen MW, Gerstein MB, Weichselbaum RR, Xing HR, Lussier YA (2010) Network modeling identifies molecular functions targeted by miR-204 to suppress head and neck tumor metastasis. PLoS Comput Biol 6:e1000730

    PubMed Central  PubMed  Google Scholar 

  • Li SL, Wang XH, Wang HP, Yang ZH, Gao WC, Pu XY (2008) [Expression of TRPM and TRPV channel family mRNA in rat spermatogenic cells]. Nan Fang Yi Ke Da Xue Xue Bao 28:2150–2153

    PubMed  CAS  Google Scholar 

  • Majeed Y, Agarwal AK, Naylor J, Seymour VA, Jiang S, Muraki K, Fishwick CW, Beech DJ (2010) Cis-isomerism and other chemical requirements of steroidal agonists and partial agonists acting at TRPM3 channels. Br J Pharmacol 161:430–441

    PubMed Central  PubMed  CAS  Google Scholar 

  • Majeed Y, Bahnasi Y, Seymour VA, Wilson LA, Milligan CJ, Agarwal AK, Sukumar P, Naylor J, Beech DJ (2011) Rapid and contrasting effects of rosiglitazone on transient receptor potential TRPM3 and TRPC5 channels. Mol Pharmacol 79:1023–1030

    PubMed Central  PubMed  CAS  Google Scholar 

  • Majeed Y, Tumova S, Green BL, Seymour VA, Woods DM, Agarwal AK, Naylor J, Jiang S, Picton HM, Porter KE, O’Regan DJ, Muraki K, Fishwick CW, Beech DJ (2012) Pregnenolone sulphate-independent inhibition of TRPM3 channels by progesterone. Cell Calcium 51:1–11

    PubMed Central  PubMed  CAS  Google Scholar 

  • Majewska MD, Schwartz RD (1987) Pregnenolone-sulfate: an endogenous antagonist of the gamma-aminobutyric acid receptor complex in brain? Brain Res 404:355–360

    PubMed  CAS  Google Scholar 

  • Majewska MD, Mienville JM, Vicini S (1988) Neurosteroid pregnenolone sulfate antagonizes electrophysiological responses to GABA in neurons. Neurosci Lett 90:279–284

    PubMed  CAS  Google Scholar 

  • Master A, Wojcicka A, Piekielko-Witkowska A, Boguslawska J, Poplawski P, Tanski Z, Darras VM, Williams GR, Nauman A (2010) Untranslated regions of thyroid hormone receptor beta 1 mRNA are impaired in human clear cell renal cell carcinoma. Biochim Biophys Acta 1802:995–1005

    PubMed  CAS  Google Scholar 

  • Mathes C, Fleig A, Penner R (1998) Calcium release-activated calcium current (ICRAC) is a direct target for sphingosine. J Biol Chem 273:25020–25030

    PubMed  CAS  Google Scholar 

  • Mayer SI, Müller I, Mannebach S, Endo T, Thiel G (2011) Signal transduction of pregnenolone sulfate in insulinoma cells: activation of Egr-1 expression involving TRPM3, voltage-gated calcium channels, ERK, and ternary complex factors. J Biol Chem 286:10084–10096

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mei ZZ, Xia R, Beech DJ, Jiang LH (2006) Intracellular coiled-coil domain engaged in subunit interaction and assembly of melastatin-related transient receptor potential channel 2. J Biol Chem 281:38748–38756

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mennerick S, Lamberta M, Shu HJ, Hogins J, Wang C, Covey DF, Eisenman LN, Zorumski CF (2008) Effects on membrane capacitance of steroids with antagonist properties at GABAA receptors. Biophys J 95:176–185

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mikhaylova O, Stratton Y, Hall D, Kellner E, Ehmer B, Drew AF, Gallo CA, Plas DR, Biesiada J, Meller J, Czyzyk-Krzeska MF (2012) VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell 21:532–546

    PubMed Central  PubMed  CAS  Google Scholar 

  • Müller I, Rössler OG, Thiel G (2011) Pregnenolone sulfate activates basic region leucine zipper transcription factors in insulinoma cells: role of voltage-gated Ca2+ channels and transient receptor potential melastatin 3 channels. Mol Pharmacol 80:1179–1189

    PubMed  Google Scholar 

  • Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, Fleig A (2001) LTRPC7 is a MgATP-regulated divalent cation channel required for cell viability. Nature 411:590–595

    PubMed  CAS  Google Scholar 

  • Naylor J, Milligan CJ, Zeng F, Jones C, Beech DJ (2008) Production of a specific extracellular inhibitor of TRPM3 channels. Br J Pharmacol 155:567–573

    PubMed Central  PubMed  CAS  Google Scholar 

  • Naylor J, Li J, Milligan CJ, Zeng F, Sukumar P, Hou B, Sedo A, Yuldasheva N, Majeed Y, Beri D, Jiang S, Seymour VA, McKeown L, Kumar B, Harteneck C, O’Regan D, Wheatcroft SB, Kearney MT, Jones C, Porter KE, Beech DJ (2010) Pregnenolone sulphate- and cholesterol-regulated TRPM3 channels coupled to vascular smooth muscle secretion and contraction. Circ Res 106:1507–1515

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nealen ML, Gold MS, Thut PD, Caterina MJ (2003) TRPM8 mRNA is expressed in a subset of cold-responsive trigeminal neurons from rat. J Neurophysiol 90:515–520

    PubMed  CAS  Google Scholar 

  • Nilius B, Owsianik G (2010) Transient receptor potential channelopathies. Pflugers Arch 460:437–450

    PubMed  CAS  Google Scholar 

  • Nilius B, Talavera K, Owsianik G, Prenen J, Droogmans G, Voets T (2005) Gating of TRP channels: a voltage connection? J Physiol 567:35–44

    PubMed Central  PubMed  CAS  Google Scholar 

  • Oberwinkler J, Philipp SE (2007) TRPM3. Handb Exp Pharmacol 179:253–267

    Google Scholar 

  • Oberwinkler J, Lis A, Giehl KM, Flockerzi V, Philipp SE (2005) Alternative splicing switches the divalent cation selectivity of TRPM3 channels. J Biol Chem 280:22540–22548

    PubMed  CAS  Google Scholar 

  • Patapoutian A, Peier AM, Story GM, Viswanath V (2003) ThermoTRP channels and beyond: mechanisms of temperature sensation. Nat Rev Neurosci 4:529–539

    PubMed  CAS  Google Scholar 

  • Phelps CB, Gaudet R (2007) The role of the N terminus and transmembrane domain of TRPM8 in channel localization and tetramerization. J Biol Chem 282:36474–36480

    PubMed  CAS  Google Scholar 

  • Prakriya M, Lewis RS (2002) Separation and characterization of currents through store-operated CRAC channels and Mg(2+)-inhibited cation (MIC) channels. J Gen Physiol 119:487–507

    PubMed Central  PubMed  CAS  Google Scholar 

  • Qin X, Yue Z, Sun B, Yang W, Xie J, Ni E, Feng Y, Mahmood R, Zhang Y, Yue L (2013) Sphingosine and FTY720 are potent inhibitors of the transient receptor potential melastatin 7 (TRPM7) channels. Br J Pharmacol 168:1294–1312

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14:1902–1910

    PubMed Central  PubMed  CAS  Google Scholar 

  • Romanovsky AA, Almeida MC, Garami A, Steiner AA, Norman MH, Morrison SF, Nakamura K, Burmeister JJ, Nucci TB (2009) The transient receptor potential vanilloid-1 channel in thermoregulation: a thermosensor it is not. Pharmacol Rev 61:228–261

    PubMed Central  PubMed  CAS  Google Scholar 

  • Samways DS, Khakh BS, Egan TM (2008) Tunable calcium current through TRPV1 receptor channels. J Biol Chem 283:31274–31278

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schulz HL, Rahman FA, Fadl El Moula FM, Stojic J, Gehrig A, Weber BH (2004) Identifying differentially expressed genes in the mammalian retina and the retinal pigment epithelium by suppression subtractive hybridization. Cytogenet Genome Res 106:74–81

    PubMed  CAS  Google Scholar 

  • Shaham O, Gueta K, Mor E, Oren-Giladi P, Grinberg D, Xie Q, Cvekl A, Shomron N, Davis N, Keydar-Prizant M, Raviv S, Pasmanik-Chor M, Bell RE, Levy C, Avellino R, Banfi S, Conte I, Ashery-Padan R (2013) Pax6 regulates gene expression in the vertebrate lens through miR-204. PLoS Genet 9:e1003357

    PubMed Central  PubMed  CAS  Google Scholar 

  • Son AR, Yang YM, Hong JH, Lee SI, Shibukawa Y, Shin DM (2009) Odontoblast TRP channels and thermo/mechanical transmission. J Dent Res 88:1014–1019

    PubMed  CAS  Google Scholar 

  • Staaf S, Franck MC, Marmigere F, Mattsson JP, Ernfors P (2010) Dynamic expression of the TRPM subgroup of ion channels in developing mouse sensory neurons. Gene Expr Patterns 10:65–74

    PubMed  CAS  Google Scholar 

  • Straub I, Krügel U, Mohr F, Teichert J, Rizun O, Konrad M, Oberwinkler J, Schaefer M (2013a) Flavanones that selectively inhibit TRPM3 attenuate thermal nociception in vivo. Mol Pharmacol 84(5):736–750

    PubMed  CAS  Google Scholar 

  • Straub I, Mohr F, Stab J, Konrad M, Philipp SE, Oberwinkler J, Schaefer M (2013b) Citrus fruit and fabacea secondary metabolites potently and selectively block TRPM3. Br J Pharmacol 168:1835–1850

    PubMed Central  PubMed  CAS  Google Scholar 

  • Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD, Altschul SF, Zeeberg B, Buetow KH, Schaefer CF, Bhat NK, Hopkins RF, Jordan H, Moore T, Max SI, Wang J, Hsieh F, Diatchenko L, Marusina K, Farmer AA, Rubin GM, Hong L, Stapleton M, Soares MB, Bonaldo MF, Casavant TL, Scheetz TE, Brownstein MJ, Usdin TB, Toshiyuki S, Carninci P, Prange C, Raha SS, Loquellano NA, Peters GJ, Abramson RD, Mullahy SJ, Bosak SA, McEwan PJ, McKernan KJ, Malek JA, Gunaratne PH, Richards S, Worley KC, Hale S, Garcia AM, Gay LJ, Hulyk SW, Villalon DK, Muzny DM, Sodergren EJ, Lu X, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madan A, Young AC, Shevchenko Y, Bouffard GG, Blakesley RW, Touchman JW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Krzywinski MI, Skalska U, Smailus DE, Schnerch A, Schein JE, Jones SJ, Marra MA (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA 99:16899–16903

    PubMed  Google Scholar 

  • Sukumar P, Beech DJ (2010) Stimulation of TRPC5 cationic channels by low micromolar concentrations of lead ions (Pb2+). Biochem Biophys Res Commun 393:50–54

    PubMed Central  PubMed  CAS  Google Scholar 

  • Takumida M, Ishibashi T, Hamamoto T, Hirakawa K, Anniko M (2009) Expression of transient receptor potential channel melastin (TRPM) 1-8 and TRPA1 (ankyrin) in mouse inner ear. Acta Otolaryngol 129:1050–1060

    PubMed  CAS  Google Scholar 

  • Tsuruda PR, Julius D, Minor DL Jr (2006) Coiled coils direct assembly of a cold-activated TRP channel. Neuron 51:201–212

    PubMed Central  PubMed  CAS  Google Scholar 

  • Vandewauw I, Owsianik G, Voets T (2013) Systematic and quantitative mRNA expression analysis of TRP channel genes at the single trigeminal and dorsal root ganglion level in mouse. BMC Neurosci 14:14–21

    Google Scholar 

  • Vergoulis T, Vlachos IS, Alexiou P, Georgakilas G, Maragkakis M, Reczko M, Gerangelos S, Koziris N, Dalamagas T, Hatzigeorgiou AG (2012) TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res 40:D222–D229

    PubMed Central  PubMed  CAS  Google Scholar 

  • Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B (2004a) The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430:748–754

    PubMed  CAS  Google Scholar 

  • Voets T, Nilius B, Hoefs S, van der Kemp AW, Droogmans G, Bindels RJ, Hoenderop JG (2004b) TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem 279:19–25

    PubMed  CAS  Google Scholar 

  • Voets T, Talavera K, Owsianik G, Nilius B (2005) Sensing with TRP channels. Nat Chem Biol 1:85–92

    PubMed  CAS  Google Scholar 

  • Vriens J, Nilius B, Vennekens R (2008) Herbal compounds and toxins modulating TRP channels. Curr Neuropharmacol 6:79–96

    PubMed Central  PubMed  CAS  Google Scholar 

  • Vriens J, Owsianik G, Hofmann T, Philipp SE, Stab J, Chen X, Benoit M, Xue F, Janssens A, Kerselaers S, Oberwinkler J, Vennekens R, Gudermann T, Nilius B, Voets T (2011) TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70:482–494

    PubMed  CAS  Google Scholar 

  • Wagner TF, Loch S, Lambert S, Straub I, Mannebach S, Mathar I, Dufer M, Lis A, Flockerzi V, Philipp SE, Oberwinkler J (2008) Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells. Nat Cell Biol 10:1421–1430

    PubMed  CAS  Google Scholar 

  • Wagner TF, Drews A, Loch S, Mohr F, Philipp SE, Lambert S, Oberwinkler J (2010) TRPM3 channels provide a regulated influx pathway for zinc in pancreatic beta cells. Pflugers Arch 460:755–765

    PubMed  CAS  Google Scholar 

  • Wang Q, Wang L, Wardwell-Swanson J (1998) Modulation of cloned human neuronal voltage-gated potassium channels (hKv1.1 and hKv2.1) by neurosteroids. Pflugers Arch 437:49–55

    PubMed  CAS  Google Scholar 

  • Wang HP, Pu XY, Wang XH (2007) Distribution profiles of transient receptor potential melastatin-related and vanilloid-related channels in prostatic tissue in rat. Asian J Androl 9:634–640

    PubMed  Google Scholar 

  • Wang FE, Zhang C, Maminishkis A, Dong L, Zhi C, Li R, Zhao J, Majerciak V, Gaur AB, Chen S, Miller SS (2010) MicroRNA-204/211 alters epithelial physiology. FASEB J 24:1552–1571

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678

    Google Scholar 

  • Wistow G, Bernstein SL, Ray S, Wyatt MK, Behal A, Touchman JW, Bouffard G, Smith D, Peterson K (2002) Expressed sequence tag analysis of adult human iris for the NEIBank Project: steroid-response factors and similarities with retinal pigment epithelium. Mol Vis 8:185–195

    PubMed  CAS  Google Scholar 

  • Wistow G, Peterson K, Gao J, Buchoff P, Jaworski C, Bowes-Rickman C, Ebright JN, Hauser MA, Hoover D (2008) NEIBank: genomics and bioinformatics resources for vision research. Mol Vis 14:1327–1337

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wu FS, Gibbs TT, Farb DH (1991) Pregnenolone sulfate: a positive allosteric modulator at the N-methyl-D-aspartate receptor. Mol Pharmacol 40:333–336

    PubMed  CAS  Google Scholar 

  • Xie Q, Yang Y, Huang J, Ninkovic J, Walcher T, Wolf L, Vitenzon A, Zheng D, Gotz M, Beebe DC, Zavadil J, Cvekl A (2013) Pax6 interactions with chromatin and identification of its novel direct target genes in lens and forebrain. PLoS One 8:e54507

    PubMed Central  PubMed  CAS  Google Scholar 

  • Xu SZ, Zeng F, Boulay G, Grimm C, Harteneck C, Beech DJ (2005) Block of TRPC5 channels by 2-aminoethoxydiphenyl borate: a differential, extracellular and voltage-dependent effect. Br J Pharmacol 145:405–414

    PubMed Central  PubMed  CAS  Google Scholar 

  • Xu G, Chen J, Jing G, Shalev A (2013) Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nat Med 19:1141–1146

    PubMed  CAS  Google Scholar 

  • Yang XR, Lin MJ, McIntosh LS, Sham JS (2006) Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am J Physiol Lung Cell Mol Physiol 290:L1267–L1276

    PubMed  CAS  Google Scholar 

  • Ying Z, Li Y, Wu J, Zhu X, Yang Y, Tian H, Li W, Hu B, Cheng SY, Li M (2013) Loss of miR-204 expression enhances glioma migration and stem cell-like phenotype. Cancer Res 73:990–999

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zamudio-Bulcock PA, Everett J, Harteneck C, Valenzuela CF (2011) Activation of steroid-sensitive TRPM3 channels potentiates glutamatergic transmission at cerebellar Purkinje neurons from developing rats. J Neurochem 119:474–485

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zeilhofer HU, Kress M, Swandulla D (1997) Fractional Ca2+ currents through capsaicin- and proton-activated ion channels in rat dorsal root ganglion neurones. J Physiol 503:67–78

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank C. Goecke and Drs. M. Behrendt and S. Dembla for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Johannes Oberwinkler or Stephan E. Philipp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oberwinkler, J., Philipp, S.E. (2014). TRPM3. In: Nilius, B., Flockerzi, V. (eds) Mammalian Transient Receptor Potential (TRP) Cation Channels. Handbook of Experimental Pharmacology, vol 222. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54215-2_17

Download citation

Publish with us

Policies and ethics