Skip to main content

TRPM2

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 222))

Abstract

TRPM2 is the second member of the transient receptor potential melastatin-related (TRPM) family of cation channels. The protein is widely expressed including in the brain, immune system, endocrine cells, and endothelia. It embodies both ion channel functionality and enzymatic ADP-ribose (ADPr) hydrolase activity. TRPM2 is a Ca2+-permeable nonselective cation channel embedded in the plasma membrane and/or lysosomal compartments that is primarily activated in a synergistic fashion by intracellular ADP-ribose (ADPr) and Ca2+. It is also activated by reactive oxygen and nitrogen species (ROS/NOS) and enhanced by additional factors, such as cyclic ADPr and NAADP, while inhibited by permeating protons (acidic pH) and adenosine monophosphate (AMP). Activation of TRPM2 leads to increases in intracellular Ca2+ levels, which can serve signaling roles in inflammatory and secretory cells through release of vesicular mediators (e.g., cytokines, neurotransmitters, insulin) and in extreme cases can induce apoptotic and necrotic cell death under oxidative stress.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amina S, Hashii M, Ma W-J, Yokoyama S, Lopatina O, Liu H-X, Islam MS, Higashida H (2010) Intracellular calcium elevation induced by extracellular application of cyclic-ADP-ribose or oxytocin is temperature-sensitive in rodent NG108-15 neuronal cells with or without exogenous expression of human oxytocin receptors. J Neuroendocrinol 22:460–466

    PubMed  CAS  Google Scholar 

  • Ayub K, Hallett MB (2004) The mitochondrial ADPR link between Ca2+ store release and Ca2+ influx channel opening in immune cells. FASEB J 18:1335–1338

    PubMed  CAS  Google Scholar 

  • Bari MR, Akbar S, Eweida M, Kühn FJP, Gustafsson AJ, Lückhoff A, Islam MS (2009) H2O2-induced Ca2+ influx and its inhibition by N-(p-amylcinnamoyl) anthranilic acid in the beta-cells: involvement of TRPM2 channels. J Cell Mol Med 13:3260–3267

    PubMed  Google Scholar 

  • Bauer I, Grozio A, Lasigliè D, Basile G, Sturla L, Magnone M, Sociali G, Soncini D, Caffa I, Poggi A, Zoppoli G, Cea M, Feldmann G, Mostoslavsky R, Ballestrero A, Patrone F, Bruzzone S, Nencioni A (2012) The NAD+-dependent histone deacetylase SIRT6 promotes cytokine production and migration in pancreatic cancer cells by regulating Ca2+ responses. J Biol Chem 287:40924–40937

    PubMed Central  PubMed  CAS  Google Scholar 

  • Beck A, Kolisek M, Bagley LA, Fleig A, Penner R (2006) Nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose regulate TRPM2 channels in T lymphocytes. FASEB J 20:962–964

    PubMed  CAS  Google Scholar 

  • Belrose JC, Xie Y-F, Gierszewski LJ, MacDonald JF, Jackson MF (2012) Loss of glutathione homeostasis associated with neuronal senescence facilitates TRPM2 channel activation in cultured hippocampal pyramidal neurons. Mol Brain 5:11

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bezzerides VJ, Ramsey IS, Kotecha S, Greka A, Clapham DE (2004) Rapid vesicular translocation and insertion of TRP channels. Nat Cell Biol 6:709–720

    PubMed  CAS  Google Scholar 

  • Brailoiu E, Churamani D, Cai X, Schrlau MG, Brailoiu GC, Gao X, Hooper R, Boulware MJ, Dun NJ, Marchant JS, Patel S (2009) Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling. J Cell Biol 186:201–209

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bruzzone S, Franco L, Guida L, Zocchi E, Contini P, Bisso A, Usai C, De Flora A (2001) A self-restricted CD38-connexin 43 cross-talk affects NAD+ and cyclic ADP-ribose metabolism and regulates intracellular calcium in 3T3 fibroblasts. J Biol Chem 276:48300–48308

    PubMed  CAS  Google Scholar 

  • Buelow B, Song Y, Scharenberg AM (2008) The Poly(ADP-ribose) polymerase PARP-1 is required for oxidative stress-induced TRPM2 activation in lymphocytes. J Biol Chem 283:24571–24583

    PubMed Central  PubMed  CAS  Google Scholar 

  • Caiafa P, Guastafierro T, Zampieri M (2009) Epigenetics: poly(ADP-ribosyl)ation of PARP-1 regulates genomic methylation patterns. FASEB J 23:672–678

    PubMed  CAS  Google Scholar 

  • Calcraft PJ, Ruas M, Pan Z, Cheng X, Arredouani A, Hao X, Tang J, Rietdorf K, Teboul L, Chuang K-T, Lin P, Xiao R, Wang C, Zhu Y, Lin Y, Wyatt CN, Parrington J, Ma J, Evans AM, Galione A, Zhu MX (2009) NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459:596–600

    PubMed Central  PubMed  CAS  Google Scholar 

  • Carter RN, Tolhurst G, Walmsley G, Vizuete-Forster M, Miller N, Mahaut-Smith MP (2006) Molecular and electrophysiological characterization of transient receptor potential ion channels in the primary murine megakaryocyte. J Physiol 576:151–162

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chen S, Zhang W, Tong Q, Conrad K, Hirschler-Laszkiewicz I, Bayerl M, Kim JK, Cheung JY, Miller BA (2013) Role of TRPM2 in cell proliferation and susceptibility to oxidative stress. Am J Physiol Cell Physiol 304:C548–C560

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cheng X, Shen D, Samie M, Xu H (2010) Mucolipins: intracellular TRPML1-3 channels. FEBS Lett 584:2013–2021

    PubMed Central  PubMed  CAS  Google Scholar 

  • Csanády L (2010) Permeating proton found guilty in compromising TRPM2 channel activity. J Physiol 588:1661–1662

    PubMed Central  PubMed  Google Scholar 

  • Csanády L, Törocsik B (2009) Four Ca2+ ions activate TRPM2 channels by binding in deep crevices near the pore but intracellularly of the gate. J Gen Physiol 133:189–203

    PubMed Central  PubMed  Google Scholar 

  • Di A, Gao X-P, Qian F, Kawamura T, Han J, Hecquet C, Ye RD, Vogel SM, Malik AB (2012) The redox-sensitive cation channel TRPM2 modulates phagocyte ROS production and inflammation. Nat Immunol 13:29–34

    CAS  Google Scholar 

  • Dong X-P, Wang X, Xu H (2010) TRP channels of intracellular membranes. J Neurochem 113:313–328

    PubMed Central  PubMed  CAS  Google Scholar 

  • Du J, Xie J, Yue L (2009a) Intracellular calcium activates TRPM2 and its alternative spliced isoforms. Proc Natl Acad Sci USA 106:7239–7244

    PubMed Central  PubMed  CAS  Google Scholar 

  • Du J, Xie J, Yue L (2009b) Modulation of TRPM2 by acidic pH and the underlying mechanisms for pH sensitivity. J Gen Physiol 134:471–488

    PubMed Central  PubMed  CAS  Google Scholar 

  • Esposito E, Cuzzocrea S (2009) Superoxide, NO, peroxynitrite and PARP in circulatory shock and inflammation. Front Biosci 14:263–296

    CAS  Google Scholar 

  • Fauzee NJS, Pan J, Wang Y (2010) PARP and PARG inhibitors–new therapeutic targets in cancer treatment. Pathol Oncol Res 16:469–478

    PubMed  CAS  Google Scholar 

  • Fleig A, Penner R (2004a) Emerging roles of TRPM channels. Novartis Found Symp 258:248–258, discussion 258–266

    PubMed  CAS  Google Scholar 

  • Fleig A, Penner R (2004b) The TRPM ion channel subfamily: molecular, biophysical and functional features. Trends Pharmacol Sci 25:633–639

    PubMed  CAS  Google Scholar 

  • Fonfria E, Marshall ICB, Benham CD, Boyfield I, Brown JD, Hill K, Hughes JP, Skaper SD, McNulty S (2004) TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br J Pharmacol 143:186–192

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fonfria E, Marshall ICB, Boyfield I, Skaper SD, Hughes JP, Owen DE, Zhang W, Miller BA, Benham CD, McNulty S (2005) Amyloid beta-peptide(1-42) and hydrogen peroxide-induced toxicity are mediated by TRPM2 in rat primary striatal cultures. J Neurochem 95:715–723

    PubMed  CAS  Google Scholar 

  • Fonfria E, Mattei C, Hill K, Brown JT, Randall A, Benham CD, Skaper SD, Campbell CA, Crook B, Murdock PR, Wilson JM, Maurio FP, Owen DE, Tilling PL, McNulty S (2006a) TRPM2 is elevated in the tMCAO stroke model, transcriptionally regulated, and functionally expressed in C13 microglia. J Recept Signal Transduct Res 26:179–198

    PubMed  CAS  Google Scholar 

  • Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, McNulty S (2006b) Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res 26:159–178

    PubMed  CAS  Google Scholar 

  • Franco L, Guida L, Bruzzone S, Zocchi E, Usai C, Flora AD (1998) The transmembrane glycoprotein CD38 is a catalytically active transporter responsible for generation and influx of the second messenger cyclic ADP-ribose across membranes. FASEB J 12:1507–1520

    PubMed  CAS  Google Scholar 

  • Galione A, Evans AM, Ma J, Parrington J, Arredouani A, Cheng X, Zhu MX (2009) The acid test: the discovery of two-pore channels (TPCs) as NAADP-gated endolysosomal Ca2+ release channels. Pflugers Arch 458:869–876

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gasser A, Bruhn S, Guse AH (2006) Second messenger function of nicotinic acid adenine dinucleotide phosphate revealed by an improved enzymatic cycling assay. J Biol Chem 281:16906–16913

    PubMed  CAS  Google Scholar 

  • Grubisha O, Rafty LA, Takanishi CL, Xu X, Tong L, Perraud A-L, Scharenberg AM, Denu JM (2006) Metabolite of SIR2 reaction modulates TRPM2 ion channel. J Biol Chem 281:14057–14065

    PubMed  CAS  Google Scholar 

  • Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, Mori E, Kudoh J, Shimizu N, Kurose H, Okada Y, Imoto K, Mori Y (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9:163–173

    PubMed  CAS  Google Scholar 

  • Haraguchi K, Kawamoto A, Isami K, Maeda S, Kusano A, Asakura K, Shirakawa H, Mori Y, Nakagawa T, Kaneko S (2012) TRPM2 contributes to inflammatory and neuropathic pain through the aggravation of pronociceptive inflammatory responses in mice. J Neurosci 32:3931–3941

    PubMed  CAS  Google Scholar 

  • Hardaker L, Bahra P, de Billy BC, Freeman M, Kupfer N, Wyss D, Trifilieff A (2012) The ion channel transient receptor potential melastatin-2 does not play a role in inflammatory mouse models of chronic obstructive pulmonary diseases. Respir Res 13:30

    PubMed Central  PubMed  CAS  Google Scholar 

  • Harteneck C, Plant TD, Schultz G (2000) From worm to man: three subfamilies of TRP channels. Trends Neurosci 23:159–166

    PubMed  CAS  Google Scholar 

  • Hecquet CM, Malik AB (2009) Role of H2O2-activated TRPM2 calcium channel in oxidant-induced endothelial injury. Thromb Haemost 101:619–625

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hecquet CM, Ahmmed GU, Vogel SM, Malik AB (2008) Role of TRPM2 channel in mediating H2O2-induced Ca2+ entry and endothelial hyperpermeability. Circ Res 102:347–355

    PubMed  CAS  Google Scholar 

  • Hecquet CM, Ahmmed GU, Malik AB (2010) TRPM2 channel regulates endothelial barrier function. Adv Exp Med Biol 661:155–167

    PubMed  CAS  Google Scholar 

  • Heiner I, Eisfeld J, Halaszovich CR, Wehage E, Jüngling E, Zitt C, Lückhoff A (2003a) Expression profile of the transient receptor potential (TRP) family in neutrophil granulocytes: evidence for currents through long TRP channel 2 induced by ADP-ribose and NAD. Biochem J 371:1045–1053

    PubMed Central  PubMed  CAS  Google Scholar 

  • Heiner I, Eisfeld J, Lückhoff A (2003b) Role and regulation of TRP channels in neutrophil granulocytes. Cell Calcium 33:533–540

    PubMed  CAS  Google Scholar 

  • Heiner I, Eisfeld J, Warnstedt M, Radukina N, Jüngling E, Lückhoff A (2006) Endogenous ADP-ribose enables calcium-regulated cation currents through TRPM2 channels in neutrophil granulocytes. Biochem J 398:225–232

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hermosura MC, Garruto RM (2007) TRPM7 and TRPM2-Candidate susceptibility genes for Western Pacific ALS and PD? Biochim Biophys Acta 1772:822–835

    PubMed Central  PubMed  CAS  Google Scholar 

  • Herson PS, Ashford ML (1997) Activation of a novel non-selective cation channel by alloxan and H2O2 in the rat insulin-secreting cell line CRI-G1. J Physiol 501:59–66

    PubMed Central  PubMed  CAS  Google Scholar 

  • Herson PS, Ashford ML (1999) Reduced glutathione inhibits beta-NAD+-activated non-selective cation currents in the CRI-G1 rat insulin-secreting cell line. J Physiol 514:47–57

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hiroi H, Momoeda M, Watanabe T, Ito M, Ikeda K, Tsutsumi R, Hosokawa Y, Koizumi M, Zenri F, Muramatsu M, Taketani Y, Inoue S (2013a) Expression and regulation of transient receptor potential cation channel, subfamily M, member 2 (TRPM2) in human endometrium. Mol Cell Endocrinol 365:146–152

    PubMed  CAS  Google Scholar 

  • Hiroi T, Wajima T, Negoro T, Ishii M, Nakano Y, Kiuchi Y, Mori Y, Shimizu S (2013b) Neutrophil TRPM2 channels are implicated in the exacerbation of myocardial ischaemia/reperfusion injury. Cardiovasc Res 97:271–281

    PubMed  CAS  Google Scholar 

  • Hong C-W, Kim T-K, Ham H-Y, Nam J-S, Kim YH, Zheng H, Pang B, Min T-K, Jung J-S, Lee S-N, Cho H-J, Kim E-J, Hong I-H, Kang T-C, Lee J, Oh SB, Jung SJ, Kim SJ, Song D-K (2010) Lysophosphatidylcholine increases neutrophil bactericidal activity by enhancement of azurophil granule-phagosome fusion via glycine.GlyR alpha 2/TRPM2/p38 MAPK signaling. J Immunol 184:4401–4413

    PubMed  CAS  Google Scholar 

  • Inamura K, Sano Y, Mochizuki S, Yokoi H, Miyake A, Nozawa K, Kitada C, Matsushime H, Furuichi K (2003) Response to ADP-ribose by activation of TRPM2 in the CRI-G1 insulinoma cell line. J Membr Biol 191:201–207

    PubMed  CAS  Google Scholar 

  • Ishii M, Shimizu S, Hagiwara T, Wajima T, Miyazaki A, Mori Y, Kiuchi Y (2006a) Extracellular-added ADP-ribose increases intracellular free Ca2+ concentration through Ca2+ release from stores, but not through TRPM2-mediated Ca2+ entry, in rat beta-cell line RIN-5F. J Pharmacol Sci 101:174–178

    PubMed  CAS  Google Scholar 

  • Ishii M, Shimizu S, Hara Y, Hagiwara T, Miyazaki A, Mori Y, Kiuchi Y (2006b) Intracellular-produced hydroxyl radical mediates H2O2-induced Ca2+ influx and cell death in rat beta-cell line RIN-5F. Cell Calcium 39:487–494

    PubMed  CAS  Google Scholar 

  • Jia J, Verma S, Nakayama S, Quillinan N, Grafe MR, Hurn PD, Herson PS (2011) Sex differences in neuroprotection provided by inhibition of TRPM2 channels following experimental stroke. J Cereb Blood Flow Metab 31:2160–2168

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jiang L-H (2007) Subunit interaction in channel assembly and functional regulation of transient receptor potential melastatin (TRPM) channels. Biochem Soc Trans 35:86–88

    PubMed  CAS  Google Scholar 

  • Kashio M, Sokabe T, Shintaku K, Uematsu T, Fukuta N, Kobayashi N, Mori Y, Tominaga M (2012) Redox signal-mediated sensitization of transient receptor potential melastatin 2 (TRPM2) to temperature affects macrophage functions. Proc Natl Acad Sci USA 109:6745–6750

    PubMed Central  PubMed  CAS  Google Scholar 

  • Katano M, Numata T, Aguan K, Hara Y, Kiyonaka S, Yamamoto S, Miki T, Sawamura S, Suzuki T, Yamakawa K, Mori Y (2012) The juvenile myoclonic epilepsy-related protein EFHC1 interacts with the redox-sensitive TRPM2 channel linked to cell death. Cell Calcium 51:179–185

    PubMed  CAS  Google Scholar 

  • Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW, Gygi SP (2011) Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 44:325–340

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kim T-K, Nam JH, Ahn W-G, Kim N-H, Ham H-Y, Hong C-W, Nam J-S, Lee J, Huh S-O, So I, Kim SJ, Song D-K (2013) Lysine 1110 of TRPM2 is critical for channel activation. Biochem J 455:319–327. doi:10.1042/BJ20130303

    PubMed  CAS  Google Scholar 

  • Knowles H, Heizer JW, Li Y, Chapman K, Ogden CA, Andreasen K, Shapland E, Kucera G, Mogan J, Humann J, Lenz LL, Morrison AD, Perraud A-L (2011) Transient Receptor Potential Melastatin 2 (TRPM2) ion channel is required for innate immunity against Listeria monocytogenes. Proc Natl Acad Sci USA 108:11578–11583

    PubMed Central  PubMed  CAS  Google Scholar 

  • Knowles H, Li Y, Perraud A-L (2013) The TRPM2 ion channel, an oxidative stress and metabolic sensor regulating innate immunity and inflammation. Immunol Res 55:241–248

    PubMed  CAS  Google Scholar 

  • Kolisek M, Beck A, Fleig A, Penner R (2005) Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Mol Cell 18:61–69

    PubMed  CAS  Google Scholar 

  • Kraft R, Grimm C, Grosse K, Hoffmann A, Sauerbruch S, Kettenmann H, Schultz G, Harteneck C (2004) Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. Am J Physiol Cell Physiol 286:C129–C137

    PubMed  CAS  Google Scholar 

  • Kühn FJP, Lückhoff A (2004) Sites of the NUDT9-H domain critical for ADP-ribose activation of the cation channel TRPM2. J Biol Chem 279:46431–46437

    PubMed  Google Scholar 

  • Kühn FJP, Knop G, Lückhoff A (2007) The transmembrane segment S6 determines cation versus anion selectivity of TRPM2 and TRPM8. J Biol Chem 282:27598–27609

    PubMed  Google Scholar 

  • Kühn FJP, Kühn C, Naziroglu M, Lückhoff A (2009) Role of an N-terminal splice segment in the activation of the cation channel TRPM2 by ADP-ribose and hydrogen peroxide. Neurochem Res 34:227–233

    PubMed  Google Scholar 

  • Lange I, Penner R, Fleig A, Beck A (2008) Synergistic regulation of endogenous TRPM2 channels by adenine dinucleotides in primary human neutrophils. Cell Calcium 44:604–615

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lange I, Yamamoto S, Partida-Sanchez S, Mori Y, Fleig A, Penner R (2009) TRPM2 functions as a lysosomal Ca2+-release channel in β cells. Sci Signal 2:ra23

    PubMed Central  PubMed  Google Scholar 

  • Lipski J, Park TIH, Li D, Lee SCW, Trevarton AJ, Chung KKH, Freestone PS, Bai J-Z (2006) Involvement of TRP-like channels in the acute ischemic response of hippocampal CA1 neurons in brain slices. Brain Res 1077:187–199

    PubMed  CAS  Google Scholar 

  • Liu X, Cotrim A, Teos L, Zheng C, Swaim W, Mitchell J, Mori Y, Ambudkar I (2013) Loss of TRPM2 function protects against irradiation-induced salivary gland dysfunction. Nat Commun 4:1515

    PubMed  Google Scholar 

  • Lund FE (2006) Signaling properties of CD38 in the mouse immune system: enzyme-dependent and -independent roles in immunity. Mol Med 12:328–333

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lund F, Solvason N, Grimaldi JC, Parkhouse RM, Howard M (1995) Murine CD38: an immunoregulatory ectoenzyme. Immunol Today 16:469–473

    PubMed  CAS  Google Scholar 

  • Lund FE, Cockayne DA, Randall TD, Solvason N, Schuber F, Howard MC (1998) CD38: a new paradigm in lymphocyte activation and signal transduction. Immunol Rev 161:79–93

    PubMed  CAS  Google Scholar 

  • Magnone M, Bauer I, Poggi A, Mannino E, Sturla L, Brini M, Zocchi E, De Flora A, Nencioni A, Bruzzone S (2012) NAD+ levels control Ca2+ store replenishment and mitogen-induced increase of cytosolic Ca2+ by cyclic ADP-ribose-dependent TRPM2 channel gating in human T lymphocytes. J Biol Chem 287:21067–21081

    PubMed Central  PubMed  CAS  Google Scholar 

  • Malavasi F, Deaglio S, Ferrero E, Funaro A, Sancho J, Ausiello CM, Ortolan E, Vaisitti T, Zubiaur M, Fedele G, Aydin S, Tibaldi EV, Durelli I, Lusso R, Cozno F, Horenstein AL (2006) CD38 and CD157 as receptors of the immune system: a bridge between innate and adaptive immunity. Mol Med 12:334–341

    PubMed Central  PubMed  CAS  Google Scholar 

  • Maruyama Y, Ogura T, Mio K, Kiyonaka S, Kato K, Mori Y, Sato C (2007) Three-dimensional reconstruction using transmission electron microscopy reveals a swollen, bell-shaped structure of transient receptor potential melastatin type 2 cation channel. J Biol Chem 282:36961–36970

    PubMed  CAS  Google Scholar 

  • Masumoto K, Tsukimoto M, Kojima S (2013) Role of TRPM2 and TRPV1 cation channels in cellular responses to radiation-induced DNA damage. Biochim Biophys Acta 1830:3382–3390

    PubMed  CAS  Google Scholar 

  • McHugh D, Flemming R, Xu S-Z, Perraud A-L, Beech DJ (2003) Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J Biol Chem 278:11002–11006

    PubMed  CAS  Google Scholar 

  • Mei Z-Z, Mao H-J, Jiang L-H (2006a) Conserved cysteine residues in the pore region are obligatory for human TRPM2 channel function. Am J Physiol Cell Physiol 291:C1022–C1028

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mei Z-Z, Xia R, Beech DJ, Jiang L-H (2006b) Intracellular coiled-coil domain engaged in subunit interaction and assembly of melastatin-related transient receptor potential channel 2. J Biol Chem 281:38748–38756

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mildvan AS, Xia Z, Azurmendi HF, Saraswat V, Legler PM, Massiah MA, Gabelli SB, Bianchet MA, Kang L-W, Amzel LM (2005) Structures and mechanisms of Nudix hydrolases. Arch Biochem Biophys 433:129–143

    PubMed  CAS  Google Scholar 

  • Miller BA, Wang J, Hirschler-Laszkiewicz I, Gao E, Song J, Zhang X-Q, Koch WJ, Madesh M, Mallilankaraman K, Gu T, Chen S, Keefer K, Conrad K, Feldman AM, Cheung JY (2013) The second member of transient receptor potential-melastatin channel family protects hearts from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 304:H1010–H1022

    PubMed Central  PubMed  CAS  Google Scholar 

  • Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA, Caterina MJ, Clapham DE, Harteneck C, Heller S, Julius D, Kojima I, Mori Y, Penner R, Prawitt D, Scharenberg AM, Schultz G, Shimizu N, Zhu MX (2002) A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 9:229–231

    PubMed  CAS  Google Scholar 

  • Morenilla-Palao C, Planells-Cases R, García-Sanz N, Ferrer-Montiel A (2004) Regulated exocytosis contributes to protein kinase C potentiation of vanilloid receptor activity. J Biol Chem 279:25665–25672

    PubMed  CAS  Google Scholar 

  • Nagamine K, Kudoh J, Minoshima S, Kawasaki K, Asakawa S, Ito F, Shimizu N (1998) Molecular cloning of a novel putative Ca2+ channel protein (TRPC7) highly expressed in brain. Genomics 54:124–131

    PubMed  CAS  Google Scholar 

  • Naziroğlu M, Lückhoff A (2008) A calcium influx pathway regulated separately by oxidative stress and ADP-Ribose in TRPM2 channels: single channel events. Neurochem Res 33:1256–1262

    PubMed  Google Scholar 

  • Numata T, Sato K, Christmann J, Marx R, Mori Y, Okada Y, Wehner F (2012) The ΔC splice-variant of TRPM2 is the hypertonicity-induced cation channel in HeLa cells, and the ecto-enzyme CD38 mediates its activation. J Physiol 590:1121–1138

    PubMed Central  PubMed  CAS  Google Scholar 

  • Oancea E, Wolfe JT, Clapham DE (2006) Functional TRPM7 channels accumulate at the plasma membrane in response to fluid flow. Circ Res 98:245–253

    PubMed  CAS  Google Scholar 

  • Oda S, Uchida K, Wang X, Lee J, Shimada Y, Tominaga M, Kadowaki M (2013) TRPM2 contributes to antigen-stimulated Ca2+ influx in mucosal mast cells. Pflugers Arch 465:1023–1030

    PubMed  CAS  Google Scholar 

  • Olah ME, Jackson MF, Li H, Perez Y, Sun H-S, Kiyonaka S, Mori Y, Tymianski M, MacDonald JF (2009) Ca2+-dependent induction of TRPM2 currents in hippocampal neurons. J Physiol 587:965–979

    PubMed Central  PubMed  CAS  Google Scholar 

  • Partida-Sánchez S, Randall TD, Lund FE (2003) Innate immunity is regulated by CD38, an ecto-enzyme with ADP-ribosyl cyclase activity. Microbes Infect 5:49–58

    PubMed  Google Scholar 

  • Partida-Sánchez S, Iribarren P, Moreno-García ME, Gao J-L, Murphy PM, Oppenheimer N, Wang JM, Lund FE (2004) Chemotaxis and calcium responses of phagocytes to formyl peptide receptor ligands is differentially regulated by cyclic ADP ribose. J Immunol 172:1896–1906

    PubMed  Google Scholar 

  • Partida-Sanchez S, Gasser A, Fliegert R, Siebrands CC, Dammermann W, Shi G, Mousseau BJ, Sumoza-Toledo A, Bhagat H, Walseth TF, Guse AH, Lund FE (2007) Chemotaxis of mouse bone marrow neutrophils and dendritic cells is controlled by adp-ribose, the major product generated by the CD38 enzyme reaction. J Immunol 179:7827–7839

    PubMed  CAS  Google Scholar 

  • Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, Kinet JP, Scharenberg AM (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411:595–599

    PubMed  CAS  Google Scholar 

  • Perraud A-L, Schmitz C, Scharenberg AM (2003a) TRPM2 Ca2+ permeable cation channels: from gene to biological function. Cell Calcium 33:519–531

    PubMed  CAS  Google Scholar 

  • Perraud A-L, Shen B, Dunn CA, Rippe K, Smith MK, Bessman MJ, Stoddard BL, Scharenberg AM (2003b) NUDT9, a member of the Nudix hydrolase family, is an evolutionarily conserved mitochondrial ADP-ribose pyrophosphatase. J Biol Chem 278:1794–1801

    PubMed  CAS  Google Scholar 

  • Perraud A-L, Takanishi CL, Shen B, Kang S, Smith MK, Schmitz C, Knowles HM, Ferraris D, Li W, Zhang J, Stoddard BL, Scharenberg AM (2005) Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. J Biol Chem 280:6138–6148

    PubMed  CAS  Google Scholar 

  • Piper RC, Luzio JP (2004) CUPpling calcium to lysosomal biogenesis. Trends Cell Biol 14:471–473

    PubMed  CAS  Google Scholar 

  • Pitt SJ, Funnell TM, Sitsapesan M, Venturi E, Rietdorf K, Ruas M, Ganesan A, Gosain R, Churchill GC, Zhu MX, Parrington J, Galione A, Sitsapesan R (2010) TPC2 is a novel NAADP-sensitive Ca2+ release channel, operating as a dual sensor of luminal pH and Ca2+. J Biol Chem 285:35039–35046

    PubMed Central  PubMed  CAS  Google Scholar 

  • Qian F, Huang P, Ma L, Kuznetsov A, Tamarina N, Philipson LH (2002) TRP genes: candidates for nonselective cation channels and store-operated channels in insulin-secreting cells. Diabetes 51:S183–S189

    PubMed  CAS  Google Scholar 

  • Roedding AS, Gao AF, Au-Yeung W, Scarcelli T, Li PP, Warsh JJ (2012) Effect of oxidative stress on TRPM2 and TRPC3 channels in B lymphoblast cells in bipolar disorder. Bipolar Disord 14:151–161

    PubMed  CAS  Google Scholar 

  • Roedding AS, Tong SY, Au-Yeung W, Li PP, Warsh JJ (2013) Chronic oxidative stress modulates TRPC3 and TRPM2 channel expression and function in rat primary cortical neurons: relevance to the pathophysiology of bipolar disorder. Brain Res 1517:16–27

    PubMed  CAS  Google Scholar 

  • Romero JR, Germer S, Castonguay AJ, Barton NS, Martin M, Zee RYL (2010) Gene variation of the transient receptor potential cation channel, subfamily M, member 2 (TRPM2) and type 2 diabetes mellitus: a case-control study. Clin Chim Acta Int J Clin Chem 411:1437–1440

    CAS  Google Scholar 

  • Ruas M, Rietdorf K, Arredouani A, Davis LC, Lloyd-Evans E, Koegel H, Funnell TM, Morgan AJ, Ward JA, Watanabe K, Cheng X, Churchill GC, Zhu MX, Platt FM, Wessel GM, Parrington J, Galione A (2010) Purified TPC isoforms form NAADP receptors with distinct roles for Ca2+ signaling and endolysosomal trafficking. Curr Biol 20:703–709

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sano Y, Inamura K, Miyake A, Mochizuki S, Yokoi H, Matsushime H, Furuichi K (2001) Immunocyte Ca2+ influx system mediated by LTRPC2. Science 293:1327–1330

    PubMed  CAS  Google Scholar 

  • Shen BW, Perraud AL, Scharenberg A, Stoddard BL (2003) The crystal structure and mutational analysis of human NUDT9. J Mol Biol 332:385–398

    PubMed  CAS  Google Scholar 

  • Shimizu T, Macey TA, Quillinan N, Klawitter J, Perraud A-LL, Traystman RJ, Herson PS (2013) Androgen and PARP-1 regulation of TRPM2 channels after ischemic injury. J Cereb Blood Flow Metab 33:1549–1555. doi:10.1038/jcbfm.2013.105

    PubMed  CAS  Google Scholar 

  • Singh BB, Lockwich TP, Bandyopadhyay BC, Liu X, Bollimuntha S, Brazer S-C, Combs C, Das S, Leenders AGM, Sheng Z-H, Knepper MA, Ambudkar SV, Ambudkar IS (2004) VAMP2-dependent exocytosis regulates plasma membrane insertion of TRPC3 channels and contributes to agonist-stimulated Ca2+ influx. Mol Cell 15:635–646

    PubMed  CAS  Google Scholar 

  • Smith MA, Herson PS, Lee K, Pinnock RD, Ashford MLJ (2003) Hydrogen-peroxide-induced toxicity of rat striatal neurones involves activation of a non-selective cation channel. J Physiol 547:417–425

    PubMed Central  PubMed  CAS  Google Scholar 

  • So I, Kim H-G, Jeon J-H, Kwon D, Shin S-Y, Shin Y-C, Chun JN, Cho HS, Lim JM. TRIP database. http://trpchannel.org/summaries/TRPM2

  • Starkus J, Beck A, Fleig A, Penner R (2007) Regulation of TRPM2 by extra- and intracellular calcium. J Gen Physiol 130:427–440

    PubMed Central  PubMed  CAS  Google Scholar 

  • Starkus JG, Fleig A, Penner R (2010) The calcium-permeable non-selective cation channel TRPM2 is modulated by cellular acidification. J Physiol 588:1227–1240

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sumoza-Toledo A, Lange I, Cortado H, Bhagat H, Mori Y, Fleig A, Penner R, Partida-Sánchez S (2011) Dendritic cell maturation and chemotaxis is regulated by TRPM2-mediated lysosomal Ca2+ release. FASEB J 25:3529–3542

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sumoza-Toledo A, Fleig A, Penner R (2013) TRPM2 channels are not required for acute airway inflammation in OVA-induced severe allergic asthma in mice. J Inflamm 10:19

    CAS  Google Scholar 

  • Sun L, Yau H-Y, Wong W-Y, Li RA, Huang Y, Yao X (2012) Role of TRPM2 in H2O2-induced cell apoptosis in endothelial cells. PLoS One 7:e43186

    PubMed Central  PubMed  CAS  Google Scholar 

  • Takahashi N, Kozai D, Kobayashi R, Ebert M, Mori Y (2011) Roles of TRPM2 in oxidative stress. Cell Calcium 50:279–287

    PubMed  CAS  Google Scholar 

  • Takahashi K, Sakamoto K, Kimura J (2012) Hypoxic stress induces transient receptor potential melastatin 2 (TRPM2) channel expression in adult rat cardiac fibroblasts. J Pharmacol Sci 118:186–197

    PubMed  CAS  Google Scholar 

  • Thebault S, Lemonnier L, Bidaux G, Flourakis M, Bavencoffe A, Gordienko D, Roudbaraki M, Delcourt P, Panchin Y, Shuba Y, Skryma R, Prevarskaya N (2005) Novel role of cold/menthol-sensitive transient receptor potential melastatine family member 8 (TRPM8) in the activation of store-operated channels in LNCaP human prostate cancer epithelial cells. J Biol Chem 280:39423–39435

    PubMed  CAS  Google Scholar 

  • Togashi K, Hara Y, Tominaga T, Higashi T, Konishi Y, Mori Y, Tominaga M (2006) TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J 25:1804–1815

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tong L, Denu JM (2010) Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose. Biochim Biophys Acta 1804:1617–1625

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tong Q, Zhang W, Conrad K, Mostoller K, Cheung JY, Peterson BZ, Miller BA (2006) Regulation of the transient receptor potential channel TRPM2 by the Ca2+ sensor calmodulin. J Biol Chem 281:9076–9085

    PubMed  CAS  Google Scholar 

  • Tóth B, Csanády L (2010) Identification of direct and indirect effectors of the transient receptor potential melastatin 2 (TRPM2) cation channel. J Biol Chem 285:30091–30102

    PubMed Central  PubMed  Google Scholar 

  • Uchida K, Tominaga M (2011) The role of thermosensitive TRP (transient receptor potential) channels in insulin secretion. Endocr J 58:1021–1028

    PubMed  CAS  Google Scholar 

  • Uchida K, Dezaki K, Damdindorj B, Inada H, Shiuchi T, Mori Y, Yada T, Minokoshi Y, Tominaga M (2011) Lack of TRPM2 impaired insulin secretion and glucose metabolisms in mice. Diabetes 60:119–126

    PubMed Central  PubMed  CAS  Google Scholar 

  • Uemura T, Kudoh J, Noda S, Kanba S, Shimizu N (2005) Characterization of human and mouse TRPM2 genes: identification of a novel N-terminal truncated protein specifically expressed in human striatum. Biochem Biophys Res Commun 328:1232–1243

    PubMed  CAS  Google Scholar 

  • Vázquez E, Valverde MA (2006) A review of TRP channels splicing. Semin Cell Dev Biol 17:607–617

    PubMed  Google Scholar 

  • Verma S, Quillinan N, Yang Y-F, Nakayama S, Cheng J, Kelley MH, Herson PS (2012) TRPM2 channel activation following in vitro ischemia contributes to male hippocampal cell death. Neurosci Lett 530:41–46

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, Choudhary C (2011) A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics 10:M111.013284

    PubMed Central  PubMed  Google Scholar 

  • Wehage E, Eisfeld J, Heiner I, Jüngling E, Zitt C, Lückhoff A (2002) Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J Biol Chem 277:23150–23156

    PubMed  CAS  Google Scholar 

  • Wehrhahn J, Kraft R, Harteneck C, Hauschildt S (2010) Transient receptor potential melastatin 2 is required for lipopolysaccharide-induced cytokine production in human monocytes. J Immunol 184:2386–2393

    PubMed  CAS  Google Scholar 

  • Wenning AS, Neblung K, Strauss B, Wolfs M-J, Sappok A, Hoth M, Schwarz EC (2011) TRP expression pattern and the functional importance of TRPC3 in primary human T-cells. Biochim Biophys Acta 1813:412–423

    PubMed  CAS  Google Scholar 

  • Xie Y-F, Macdonald JF, Jackson MF (2010) TRPM2, calcium and neurodegenerative diseases. Int J Physiol Pathophysiol Pharmacol 2:95–103

    PubMed Central  PubMed  CAS  Google Scholar 

  • Xie Y-F, Belrose JC, Lei G, Tymianski M, Mori Y, Macdonald JF, Jackson MF (2011) Dependence of NMDA/GSK-3β mediated metaplasticity on TRPM2 channels at hippocampal CA3-CA1 synapses. Mol Brain 4:44

    PubMed Central  PubMed  CAS  Google Scholar 

  • Xu C, Macciardi F, Li PP, Yoon I-S, Cooke RG, Hughes B, Parikh SV, McIntyre RS, Kennedy JL, Warsh JJ (2006) Association of the putative susceptibility gene, transient receptor potential protein melastatin type 2, with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 141B:36–43

    PubMed  CAS  Google Scholar 

  • Xu C, Li PP, Cooke RG, Parikh SV, Wang K, Kennedy JL, Warsh JJ (2009) TRPM2 variants and bipolar disorder risk: confirmation in a family-based association study. Bipolar Disord 11:1–10

    PubMed  Google Scholar 

  • Xu C, Warsh JJ, Wang KS, Mao CX, Kennedy JL (2013a) Association of the iPLA2β gene with bipolar disorder and assessment of its interaction with TRPM2 gene polymorphisms. Psychiatr Genet 23:86–89

    PubMed  CAS  Google Scholar 

  • Xu R, Li Q, Zhou X-D, Perelman JM, Kolosov VP (2013b) Oxidative Stress Mediates the Disruption of Airway Epithelial Tight Junctions through a TRPM2-PLCγ1-PKCα Signaling Pathway. Int J Mol Sci 14:9475–9486

    PubMed Central  PubMed  Google Scholar 

  • Yamamoto S, Shimizu S, Kiyonaka S, Takahashi N, Wajima T, Hara Y, Negoro T, Hiroi T, Kiuchi Y, Okada T, Kaneko S, Lange I, Fleig A, Penner R, Nishi M, Takeshima H, Mori Y (2008) TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat Med 14:738–747

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yamamoto S, Shimizu S, Mori Y (2009) Involvement of TRPM2 channel in amplification of reactive oxygen species-induced signaling and chronic inflammation. Nihon Yakurigaku Zasshi Folia Pharmacol Jpn 134:122–126

    CAS  Google Scholar 

  • Yamamoto S, Takahashi N, Mori Y (2010) Chemical physiology of oxidative stress-activated TRPM2 and TRPC5 channels. Prog Biophys Mol Biol 103:18–27

    PubMed  CAS  Google Scholar 

  • Yang X-R, Lin M-J, McIntosh LS, Sham JSK (2006) Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am J Physiol Lung Cell Mol Physiol 290:L1267–L1276

    PubMed  CAS  Google Scholar 

  • Yang W, Zou J, Xia R, Vaal ML, Seymour VA, Luo J, Beech DJ, Jiang L-H (2010) State-dependent inhibition of TRPM2 channel by acidic pH. J Biol Chem 285:30411–30418

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yang W, Manna PT, Zou J, Luo J, Beech DJ, Sivaprasadarao A, Jiang L-H (2011) Zinc inactivates melastatin transient receptor potential 2 channels via the outer pore. J Biol Chem 286:23789–23798

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zeng X, Sikka SC, Huang L, Sun C, Xu C, Jia D, Abdel-Mageed AB, Pottle JE, Taylor JT, Li M (2010) Novel role for the transient receptor potential channel TRPM2 in prostate cancer cell proliferation. Prostate Cancer Prostatic Dis 13:195–201

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zeng B, Chen G-L, Xu S-Z (2012) Divalent copper is a potent extracellular blocker for TRPM2 channel. Biochem Biophys Res Commun 424:279–284

    PubMed  CAS  Google Scholar 

  • Zhang W, Chu X, Tong Q, Cheung JY, Conrad K, Masker K, Miller BA (2003) A novel TRPM2 isoform inhibits calcium influx and susceptibility to cell death. J Biol Chem 278:16222–16229

    PubMed  CAS  Google Scholar 

  • Zhang W, Tong Q, Conrad K, Wozney J, Cheung JY, Miller BA (2007) Regulation of TRP channel TRPM2 by the tyrosine phosphatase PTPL1. Am J Physiol Cell Physiol 292:C1746–C1758

    PubMed  CAS  Google Scholar 

  • Zhang Z, Zhang W, Jung DY, Ko HJ, Lee Y, Friedline RH, Lee E, Jun J, Ma Z, Kim F, Tsitsilianos N, Chapman K, Morrison A, Cooper MP, Miller BA, Kim JK (2012) TRPM2 Ca2+ channel regulates energy balance and glucose metabolism. Am J Physiol Endocrinol Metab 302:E807–E816

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhong Z, Zhai Y, Liang S, Mori Y, Han R, Sutterwala FS, Qiao L (2013) TRPM2 links oxidative stress to NLRP3 inflammasome activation. Nat Commun 4:1611

    PubMed Central  PubMed  Google Scholar 

  • Zong X, Schieder M, Cuny H, Fenske S, Gruner C, Rötzer K, Griesbeck O, Harz H, Biel M, Wahl-Schott C (2009) The two-pore channel TPCN2 mediates NAADP-dependent Ca2+-release from lysosomal stores. Pflugers Arch 458:891–899

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zou J, Ainscough JF, Yang W, Sedo A, Yu S-P, Mei Z-Z, Sivaprasadarao A, Beech DJ, Jiang L-H (2013) A differential role of macrophage TRPM2 channels in Ca2+ signalling and cell death in early responses to H2O2. Am J Physiol Cell Physiol 305:C61–C69

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Malika Faouzi or Reinhold Penner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Faouzi, M., Penner, R. (2014). TRPM2. In: Nilius, B., Flockerzi, V. (eds) Mammalian Transient Receptor Potential (TRP) Cation Channels. Handbook of Experimental Pharmacology, vol 222. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54215-2_16

Download citation

Publish with us

Policies and ethics