Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 222))

Abstract

Transient receptor potential vanilloid-3 (TRPV3) is a Ca2+-permeable nonselective cation channel widely expressed in skin keratinocytes, as well as oral and nasal epithelia. TRPV3 is activated by innocuous warm as well as noxious hot temperatures. Activation of TRPV3 in skin keratinocytes causes release of multiple substances, which in turn regulate diverse functions including skin barrier formation, hair growth, wound healing, temperature sensing, and itch and pain perceptions. While several natural and synthetic ligands have been described for TRPV3, only one of them, farnesyl pyrophosphate, is naturally produced in animal cells. Together with the use of genetic mouse models, applications of these compounds have revealed not only the physiological functions but also regulatory mechanisms of TRPV3 channel by extracellular Ca2+, Mg2+, and protons as well as intracellular Ca2+-calmodulin, ATP, phosphatidylinositol 4,5-bisphosphate, polyunsaturated fatty acids, protons, and Mg2+. Gain-of-function genetic mutations of TRPV3 in rodents and humans have been instrumental in unveiling the critical role of this channel in skin health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed MK, Takumida M, Ishibashi T, Hamamoto T, Hirakawa K (2009) Expression of transient receptor potential vanilloid (TRPV) families 1, 2, 3 and 4 in the mouse olfactory epithelium. Rhinology 47:242–247

    PubMed  Google Scholar 

  • Asakawa M, Yoshioka T, Matsutani T, Hikita I, Suzuki M, Oshima I, Tsukahara K, Arimura A, Horikawa T, Hirasawa T, Sakata T (2006) Association of a mutation in TRPV3 with defective hair growth in rodents. J Invest Dermatol 126:2664–2672

    Article  PubMed  CAS  Google Scholar 

  • Bang S, Yoo S, Yang TJ, Cho H, Hwang SW (2010) Farnesyl pyrophosphate is a novel pain-producing molecule via specific activation of TRPV3. J Biol Chem 285:19362–19371

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bang S, Yoo S, Yang TJ, Cho H, Hwang SW (2011) Isopentenyl pyrophosphate is a novel antinociceptive substance that inhibits TRPV3 and TRPA1 ion channels. Pain 152:1156–1164

    Article  PubMed  CAS  Google Scholar 

  • Bang S, Yoo S, Yang TJ, Cho H, Hwang SW (2012) 17(R)-resolvin D1 specifically inhibits transient receptor potential ion channel vanilloid 3 leading to peripheral antinociception. Br J Pharmacol 165:683–692

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bootman MD, Collins TJ, Mackenzie L, Roderick HL, Berridge MJ, Peppiatt CM (2002) 2-aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release. FASEB J 16:1145–1150

    Article  PubMed  CAS  Google Scholar 

  • Borbíró I, Lisztes E, Tóth BI, Czifra G, Oláh A, Szöllosi AG, Szentandrássy N, Nánási PP, Péter Z, Paus R, Kovács L, Bíró T (2011) Activation of transient receptor potential vanilloid-3 inhibits human hair growth. J Invest Dermatol 131:1605–1614

    Article  PubMed  CAS  Google Scholar 

  • Brown TE, Chirila AM, Schrank BR, Kauer JA (2013) Loss of interneuron LTD and attenuated pyramidal cell LTP in Trpv1 and Trpv3 KO mice. Hippocampus 23:662–671

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Yang F, Zheng J, Wang K (2012) Intracellular proton-mediated activation of TRPV3 channels accounts for the exfoliation effect of alpha-hydroxyl acids on keratinocytes. J Biol Chem 287:25905–25916

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cheng X, Jin J, Hu L, Shen D, Dong XP, Samie MA, Knoff J, Eisinger B, Liu ML, Huang SM, Caterina MJ, Dempsey P, Michael LE, Dlugosz AA, Andrews NC, Clapham DE, Xu H (2010) TRP channel regulates EGFR signaling in hair morphogenesis and skin barrier formation. Cell 141:331–343

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cheng W, Yang F, Liu S, Colton CK, Wang C, Cui Y, Cao X, Zhu MX, Sun C, Wang K, Zheng J (2012) Heteromeric heat-sensitive transient receptor potential channels exhibit distinct temperature and chemical response. J Biol Chem 287:7279–7288

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chung MK, Lee H, Mizuno A, Suzuki M, Caterina MJ (2004a) 2-aminoethoxydiphenyl borate activates and sensitizes the heat-gated ion channel TRPV3. J Neurosci 24:5177–5182

    Article  PubMed  CAS  Google Scholar 

  • Chung MK, Lee H, Mizuno A, Suzuki M, Caterina MJ (2004b) TRPV3 and TRPV4 mediate warmth-evoked currents in primary mouse keratinocytes. J Biol Chem 279:21569–21575

    Article  PubMed  CAS  Google Scholar 

  • Chung MK, Güler AD, Caterina MJ (2005) Biphasic currents evoked by chemical or thermal activation of the heat-gated ion channel, TRPV3. J Biol Chem 280:15928–15941

    Article  PubMed  CAS  Google Scholar 

  • Chung MK, Güler AD, Caterina MJ (2008) TRPV1 shows dynamic ionic selectivity during agonist stimulation. Nat Neurosci 11:555–564

    Article  PubMed  CAS  Google Scholar 

  • Clapham DE, Runnels LW, Strübing C (2001) The TRP ion channel family. Nat Rev Neurosci 2:387–396

    Article  PubMed  CAS  Google Scholar 

  • Corsini E, Primavera A, Marinovich M, Galli CL (1998) Selective induction of cell-associated interleukin-1alpha in murine keratinocytes by chemical allergens. Toxicology 129:193–200

    Article  PubMed  CAS  Google Scholar 

  • Danso-Abeam D, Zhang J, Dooley J, Staats KA, Van Eyck L, Van Brussel T, Zaman S, Hauben E, Van de Velde M, Morren MA, Renard M, Van Geet C, Schaballie H, Lambrechts D, Tao J, Franckaert D, Humblet-Baron S, Meyts I, Liston A (2013) Olmsted syndrome: exploration of the immunological phenotype. Orphanet J Rare Dis 8:79

    Article  PubMed Central  PubMed  Google Scholar 

  • De Petrocellis L, Orlando P, Moriello AS, Aviello G, Stott C, Izzo AA, Di Marzo V (2012) Cannabinoid actions at TRPV channels: effects on TRPV3 and TRPV4 and their potential relevance to gastrointestinal inflammation. Acta Physiol (Oxf) 204:255–266

    Article  CAS  Google Scholar 

  • Doerner JF, Hatt H, Ramsey IS (2011) Voltage- and temperature-dependent activation of TRPV3 channels is potentiated by receptor-mediated PI(4,5)P2 hydrolysis. J Gen Physiol 137:271–288

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Earley S, Gonzales AL, Garcia ZI (2010) A dietary agonist of transient receptor potential cation channel V3 elicits endothelium-dependent vasodilation. Mol Pharmacol 77:612–620

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Efendiev R, Bavencoffe A, Hu H, Zhu MX, Dessauer CW (2013) Scaffolding by A-kinase anchoring protein enhances functional coupling between adenylyl cyclase and TRPV1 channel. J Biol Chem 288:3929–3937

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Garcia-Martinez C, Morenilla-Palao C, Planells-Cases R, Merino JM, Ferrer-Montiel A (2000) Identification of an aspartic residue in the P-loop of the vanilloid receptor that modulates pore properties. J Biol Chem 275:32552–32558

    Article  PubMed  CAS  Google Scholar 

  • Gees M, Colsoul B, Nilius B (2010) The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb Perspect Biol 2:a003962

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Grandl J, Hu H, Bandell M, Bursulaya B, Schmidt M, Petrus M, Patapoutian A (2008) Pore region of TRPV3 ion channel is specifically required for heat activation. Nat Neurosci 11:1007–1013

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hellwig N, Albrecht N, Harteneck C, Schultz G, Schaefer M (2005) Homo- and heteromeric assembly of TRPV channel subunits. J Cell Sci 118:917–928

    Article  PubMed  CAS  Google Scholar 

  • Hinman A, Chuang HH, Bautista DM, Julius D (2006) TRP channel activation by reversible covalent modification. Proc Natl Acad Sci USA 103:19564–19568

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hoeft B, Linseisen J, Beckmann L et al (2010) Polymorphisms in fatty-acid-metabolism-related genes are associated with colorectal cancer risk. Carcinogenesis 31:466–472

    Article  PubMed  CAS  Google Scholar 

  • Hu HZ, Gu Q, Wang C, Colton CK, Tang J, Kinoshita-Kawada M, Lee LY, Wood JD, Zhu MX (2004) 2-aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. J Biol Chem 279:35741–35748

    Article  PubMed  CAS  Google Scholar 

  • Hu HZ, Xiao R, Wang C, Gao N, Colton CK, Wood JD, Zhu MX (2006) Potentiation of TRPV3 channel function by unsaturated fatty acids. J Cell Physiol 208:201–212

    Article  PubMed  CAS  Google Scholar 

  • Hu H, Grandl J, Bandell M, Petrus M, Patapoutian A (2009) Two amino acid residues determine 2-APB sensitivity of the ion channels TRPV3 and TRPV4. Proc Natl Acad Sci USA 106:1626–1631

    Article  PubMed Central  PubMed  Google Scholar 

  • Huang SM, Lee H, Chung MK, Park U, Yu YY, Bradshaw HB, Coulombe PA, Walker JM, Caterina MJ (2008) Overexpressed transient receptor potential vanilloid 3 ion channels in skin keratinocytes modulate pain sensitivity via prostaglandin E2. J Neurosci 28:13727–13737

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Huang SM, Li X, Yu Y, Wang J, Caterina MJ (2011) TRPV3 and TRPV4 ion channels are not major contributors to mouse heat sensation. Mol Pain 7:37

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Imura K, Yoshioka T, Hikita I, Tsukahara K, Hirasawa T, Higashino K, Gahara Y, Arimura A, Sakata T (2007) Influence of TRPV3 mutation on hair growth cycle in mice. Biochem Biophys Res Commun 363:479–483

    Article  PubMed  CAS  Google Scholar 

  • Inada H, Procko E, Sotomayor M, Gaudet R (2012) Structural and biochemical consequences of disease-causing mutations in the ankyrin repeat domain of the human TRPV4 channel. Biochemistry 51:6195–6206

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Karashima Y, Damann N, Prenen J, Talavera K, Segal A, Voets T, Nilius B (2007) Bimodal action of menthol on the transient receptor potential channel TRPA1. J Neurosci 27:9874–9884

    Article  PubMed  CAS  Google Scholar 

  • Kim SE, Patapoutian A, Grandl J (2013) Single residues in the outer pore of TRPV1 and TRPV3 have temperature-dependent conformations. PLoS One 8:e59593

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lai-Cheong JE, Sethuraman G, Ramam M, Stone K, Simpson MA, McGrath JA (2012) Recurrent heterozygous missense mutation, p.Gly573Ser, in the TRPV3 gene in an Indian boy with sporadic Olmsted syndrome. Br J Dermatol 167:440–442

    Article  PubMed  CAS  Google Scholar 

  • Li M, Jiang J, Yue L (2006) Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol 127:525–537

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lin Z, Chen Q, Lee M, Cao X, Zhang J, Ma D, Chen L, Hu X, Wang H, Wang X, Zhang P, Liu X, Guan L, Tang Y, Yang H, Tu P, Bu D, Zhu X, Wang K, Li R, Yang Y (2012) Exome sequencing reveals mutations in TRPV3 as a cause of Olmsted syndrome. Am J Hum Genet 90:558–564

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lishko PV, Procko E, Jin X, Phelps CB, Gaudet R (2007) The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron 54:905–918

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Yao J, Zhu MX, Qin F (2011) Hysteresis of gating underlines sensitization of TRPV3 channels. J Gen Physiol 138:509–520

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Luo J, Stewart R, Berdeaux R, Hu H (2012) Tonic inhibition of TRPV3 by Mg2+ in mouse epidermal keratinocytes. J Invest Dermatol 132:2158–2165

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Macpherson LJ, Hwang SW, Miyamoto T, Dubin AE, Patapoutian A, Story GM (2006) More than cool: promiscuous relationships of menthol and other sensory compounds. Mol Cell Neurosci 32:335–343

    Article  PubMed  CAS  Google Scholar 

  • Mandadi S, Sokabe T, Shibasaki K, Katanosaka K, Mizuno A, Moqrich A, Patapoutian A, Fukumi-Tominaga T, Mizumura K, Tominaga M (2009) TRPV3 in keratinocytes transmits temperature information to sensory neurons via ATP. Pflugers Arch 458:1093–1102

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Maruyama T, Kanaji T, Nakade S, Kanno T, Mikoshiba K (1997) 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release. J Biochem 122:498–505

    Article  PubMed  CAS  Google Scholar 

  • McCleverty CJ, Koesema E, Patapoutian A, Lesley SA, Kreusch A (2006) Crystal structure of the human TRPV2 channel ankyrin repeat domain. Protein Sci 15:2201–2206

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto T, Petrus MJ, Dubin AE, Patapoutian A (2011) TRPV3 regulates nitric oxide synthase-independent nitric oxide synthesis in the skin. Nat Commun 2:369

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Moqrich A, Hwang SW, Earley TJ, Petrus MJ, Murray AN, Spencer KS, Andahazy M, Story GM, Patapoutian A (2005) Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307:1468–1472

    Article  PubMed  CAS  Google Scholar 

  • Moussaieff A, Rimmerman N, Bregman T, Straiker A, Felder CC, Shoham S, Kashman Y, Huang SM, Lee H, Shohami E, Mackie K, Caterina MJ, Walker JM, Fride E, Mechoulam R (2008) Incensole acetate, an incense component, elicits psychoactivity by activating TRPV3 channels in the brain. FASEB J 22:3024–3034

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Moussaieff A, Yu J, Zhu H, Gattoni-Celli S, Shohami E, Kindy MS (2012) Protective effects of incensole acetate on cerebral ischemic injury. Brain Res 1443:89–97

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nilius B, Bíró T (2013) TRPV3: a ‘more than skinny’ channel. Exp Dermatol 22:447–452

    Article  PubMed  CAS  Google Scholar 

  • Nilius B, Bíró T, Owsianik G (2014) TRPV3: time to decipher a poorly understood family member! J Physiol 592(Pt 2):295–304

    Article  PubMed  CAS  Google Scholar 

  • Oláh A, SzöllÅ‘si AG, Bíró T (2012) The channel physiology of the skin. Rev Physiol Biochem Pharmacol 163:65–131

    PubMed  Google Scholar 

  • Peier AM, Reeve AJ, Andersson DA, Moqrich A, Earley TJ, Hergarden AC, Story GM, Colley S, Hogenesch JB, McIntyre P, Bevan S, Patapoutian A (2002) A heat-sensitive TRP channel expressed in keratinocytes. Science 296:2046–2049

    Article  PubMed  CAS  Google Scholar 

  • Phelps CB, Wang RR, Choo SS, Gaudet R (2010) Differential regulation of TRPV1, TRPV3, and TRPV4 sensitivity through a conserved binding site on the ankyrin repeat domain. J Biol Chem 285:731–740

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Prakriya M, Lewis RS (2001) Potentiation and inhibition of Ca2+ release-activated Ca2+ channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP3 receptors. J Physiol 536:3–19

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Proverbio MC, Mangano E, Gessi A, Bordoni R, Spinelli R, Asselta R, Valin PS, Di Candia S, Zamproni I, Diceglie C, Mora S, Caruso-Nicoletti M, Salvatoni A, De Bellis G, Battaglia C (2013) Whole genome SNP genotyping and exome sequencing reveal novel genetic variants and putative causative genes in congenital hyperinsulinism. PLoS One 8(7):e68740

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ryu S, Liu B, Yao J, Fu Q, Qin F (2007) Uncoupling proton activation of vanilloid receptor TRPV1. J Neurosci 27:12797–12807

    Article  PubMed  CAS  Google Scholar 

  • Saito S, Fukuta N, Shingai R, Tominaga M (2011) Evolution of vertebrate transient receptor potential vanilloid 3 channels: opposite temperature sensitivity between mammals and western clawed frogs. PLoS Genet 7(4):e1002041

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Scholl I, Jensen-Jarolim E (2004) Allergenic potency of spices: hot, medium hot, or very hot. Int Arch Allergy Immunol 135:247–261

    Article  PubMed  CAS  Google Scholar 

  • Smith GD, Gunthorpe MJ, Kelsell RE, Hayes PD, Reilly P, Facer P, Wright JE, Jerman JC, Walhin JP, Ooi L, Egerton J, Charles KJ, Smart D, Randall AD, Anand P, Davis JB (2002) TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418:186–190

    Article  PubMed  CAS  Google Scholar 

  • Stotz SC, Vriens J, Martyn D, Clardy J, Clapham DE (2008) Citral sensing by transient receptor potential channels in dorsal root ganglion neurons. PLoS One 3:e2082

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ueda T, Yamada T, Ugawa S, Ishida Y, Shimada S (2009) TRPV3, a thermosensitive channel is expressed in mouse distal colon epithelium. Biochem Biophys Res Commun 383:130–134

    Article  PubMed  CAS  Google Scholar 

  • Voets T, Prenen J, Vriens J, Watanabe H, Janssens A, Wissenbach U, Bodding M, Droogmans G, Nilius B (2002) Molecular determinants of permeation through the cation channel TRPV4. J Biol Chem 277:33704–33710

    Article  PubMed  CAS  Google Scholar 

  • Xiao R, Tang J, Wang C, Colton CK, Tian J, Zhu MX (2008a) Calcium plays a central role in the sensitization of TRPV3 channel to repetitive stimulations. J Biol Chem 283:6162–6174

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xiao R, Tian J, Tang J, Zhu MX (2008b) The TRPV3 mutation associated with the hairless phenotype in rodents is constitutively active. Cell Calcium 43:334–343

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xu H, Ramsey IS, Kotecha SA, Moran MM, Chong JA, Lawson D, Ge P, Lilly J, Silos-Santiago I, Xie Y, DiStefano PS, Curtis R, Clapham DE (2002) TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418:181–186

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Blair NT, Clapham DE (2005) Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. J Neurosci 25:8924–8937

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Delling M, Jun JC, Clapham DE (2006) Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat Neurosci 9:628–635

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto-Kasai E, Imura K, Yasui K, Shichijou M, Oshima I, Hirasawa T, Sakata T, Yoshioka T (2012) TRPV3 as a therapeutic target for itch. J Invest Dermatol 132:2109–2112

    Article  PubMed  CAS  Google Scholar 

  • Yao J, Liu B, Qin F (2009) Rapid temperature jump by infrared diode laser irradiation for patch-clamp studies. Biophys J 96:3611–3619

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yao J, Liu B, Qin F (2011) Modular thermal sensors in temperature-gated transient receptor potential (TRP) channels. Proc Natl Acad Sci USA 108:11109–11114

    Article  PubMed Central  PubMed  Google Scholar 

  • Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y, Mori Y (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2:596–607

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka T, Imura K, Asakawa M, Suzuki M, Oshima I, Hirasawa T, Sakata T, Horikawa T, Arimura A (2009) Impact of the Gly573Ser substitution in TRPV3 on the development of allergic and pruritic dermatitis in mice. J Invest Dermatol 129:714–722

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Jones S, Brody K, Costa M, Brookes SJ (2004) Thermosensitive transient receptor potential channels in vagal afferent neurons of the mouse. Am J Physiol Gastrointest Liver Physiol 286:G983–G991

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Li L, McNaughton PA (2008) Proinflammatory mediators modulate the heat-activated ion channel TRPV1 via the scaffolding protein AKAP79/150. Neuron 59:450–461

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Research in the MXZ lab was supported in part by grants from US National Institutes of Health DK081654, GM081658, and GM092759.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael X. Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yang, P., Zhu, M.X. (2014). TRPV3. In: Nilius, B., Flockerzi, V. (eds) Mammalian Transient Receptor Potential (TRP) Cation Channels. Handbook of Experimental Pharmacology, vol 222. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54215-2_11

Download citation

Publish with us

Policies and ethics