Study on Architecture and Topology of Mobile Underwater Wireless Sensor Networks

Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 295)

Abstract

Mobile underwater wireless sensor networks (MUWSNs) is becoming an active research field. Owing to the factors that complex underwater conditions and the mobility of the underwater sensors have made MUWSNs to evolve dynamically, it is important to study the architecture and topology of MUWSNs. First, the research status of MUWSNs is clarified. Second, the features and architecture are analyzed. Third, the topological characteristics of MUWSNs are discussed. Finally, the directions of the future study are put forward.

Keywords

MUWSNs Autonomous underwater vehicle Sensor deployment Coverage efficiency 

References

  1. 1.
    Liu K, Yang Z, Li M et al (2010) Ocean-sense monitoring the sea with wireless sensor networks. ACM SIGMOBILE Mob Comput Commun Rev 14(2):7–9CrossRefGoogle Scholar
  2. 2.
    Casari P, Zorzi M (2011) Protocol design issues in underwater acoustic networks. Comput Commun 34:2013–2025Google Scholar
  3. 3.
    Shusta J (2010) Acoustic network architecture. In: Proceedings of 5th ACM international workshop on underwater networks (WUWNet). Woods Hole, MAACM, pp 28–34Google Scholar
  4. 4.
    Akyildiz IF, Pompili D, Melodia T (2005) Underwater acoustic sensor network: research challenges. Ad Hoc Netw 3(3):257–279Google Scholar
  5. 5.
    Cui J-H, Kong J, Gerla M et al (2006) ChallengesBuilding saclable mobile underwater wireless sensor networks for aquatic applications. IEEE Netw Spec Issue Wirel Sens Netw 20(3):12–18Google Scholar
  6. 6.
    Chao L, Shuo W, Min T (2009) Survey on mobile underwater wireless sensor networks. Control Decis 24(6):801–812Google Scholar
  7. 7.
    Wei Z, Yang G, Cong Y (2012) Security of underwater sensor networks. Chin J Comput 35(8):1594–1606Google Scholar
  8. 8.
    Lu F, Mirza D, Schurgers C (2010) D-Sync Doppler-based time synchronization for mobile underwater sensor networks. In: Proceedings of 5th ACM international workshop on underwater networks (WUWNet), woods Hole, ACM, pp 31–38Google Scholar
  9. 9.
    Heidemann J, Ye W, Wills J et al (2006) Research challenges and applications for underwater sensor networking. In: Proceedings of IEEE wireless communication and networking conference, Las Vegas, pp 228–235Google Scholar
  10. 10.
    Heidemann J, Stojanovic M, Zorzi M (2012) Underwater sensor networks applications, advances and challenges. Philos Trans R Soc A 370:158–175CrossRefGoogle Scholar
  11. 11.
    Li B, Zhou S, Stojanovic M et al (2008) Multi-carrier communication over underwater acoustic channels with non-uniform doppler shifts. IEEE J Ocean Eng 33(2):198–209Google Scholar
  12. 12.
    Liu L, Zhou S, Cui J-H (2008) Prospects and peoblems of wirless communications for underwater sensor networks. Wirel Commun Mob Comput 8(8):977–994CrossRefGoogle Scholar
  13. 13.
    Junfeng X, Li K, Min G (2012) Reliable and energy-efficient multipath communications in underwater sensor networks. IEEE Trans Parallel Distrib Syst 23(7):1326–1335CrossRefGoogle Scholar
  14. 14.
    Tan HP, Diamant R, Seah WK, Waldmeyer M (2011) A survey of techniques and challenges in underwater localization. Ocean Eng 38(14):1663–1676Google Scholar
  15. 15.
    Erol-Kantarci M, Mouftah HT, Oktug S (2011) A survey of architectures and localization techniques for underwater acoustic sensor networks. IEEE Commun Surv Tutorials (COMSUR) 13(3):487–502CrossRefGoogle Scholar
  16. 16.
    Sanchez A, Blanc S, Yuste P, Piqueras I, Serrano JJ (2012) Advanced acoustic wake-up system for underwater sensor networks. Commun Inf Sci Manag Eng 2(2):1–10Google Scholar
  17. 17.
    Goodney A, Cho Y, Heidemann J, Wroclawski J (2010) An underwater communication and sensing testbed in Marina del Rey (poster abstract). In: Proceedings of 5th ACM international workshop on underwater networks (WUWNet), ACM, Woods HoleGoogle Scholar
  18. 18.
    Luo H, Guo Z, Dong W et al (2010) LDBLocalization with directional beacons for sparse 3D underwater acoustic sensor networks. J Netw 5(1):28–38Google Scholar
  19. 19.
    Caruso A, Paparella, Vieira LFM, et al (2008) The meandering current mobility model and its impact on underwater mobile sensor networks. In: Proc of INFOCOM, Piscataway, NJIEEE, pp 221–229Google Scholar
  20. 20.
    Guo Z, Luo H, Hong F et al (2010) Current progress and research issue in underwater sensor networks. J Comput Res Dev 47(3):377–389Google Scholar
  21. 21.
    Erol-Kantarci M, Oktug S (2011) A survey of architectures and localization techniques for underwater acoustic sensor networks. IEEE Commun Surv Tutor 13(3):487–502Google Scholar
  22. 22.
    Zhou RZ, Peng JZ, Cui J-H et al (2011) Scalable localization with mobility prediction for underwater sensor networks. IEEE Trans Mob Comput-TMC 10(3):335–348Google Scholar
  23. 23.
    Climent S, Capella JV, Meratnia N, Serrano JJ (2012) Underwater sensor networks a new energy efficient and robust architecture. Sensors 12(1):704–731Google Scholar
  24. 24.
    Sendra Sandra, Lloret Jaime, García Miguel, Toledo José F (2011) Power saving and energy optimization techniques for wireless sensor networks. J Commun 6(6):439–459CrossRefGoogle Scholar
  25. 25.
    Yoon S, Azad AK, Oh H, Kim S (2012) AURP an AUV-aided underwater routing protocol for underwater acoustic sensor networks. Sensors 12:1827–1845Google Scholar
  26. 26.
    Pompili D, Melodia T, Akyildiz IF (2009) Three-dimensional and two-dimensional deployment analysis for underwater acoustic sensor networks. Ad Hoc Netw 7(4):778–790CrossRefGoogle Scholar
  27. 27.
    Akkaya K, Newell A (2009) Self-deployment of sensors for maximized coverage in underwater acoustic sensor networks. Comput Commun 32(7–10):1233–1244CrossRefGoogle Scholar
  28. 28.
    Golen EF, Mishra S, Shenoy N (2010) An underwater sensor allocation scheme for a range dependent environment. Comput Netw 54(3):404–415CrossRefGoogle Scholar
  29. 29.
    Erol M, Vieira LFM, Gerla M (2007) Auv-aided localization for underwater sensor neteorks. In: Proceeding of the international conference on wireless algorithms systems and applications(WASA2007), Piscataway, NJIEEE, pp 44–54Google Scholar
  30. 30.
    Liu Jun Yu, Geng Zhang Huipeng (2011) A topology reconfiguration algorithm through node position control for space information networks. Acta Electronica Sinica 39(8):1837–1844Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ming He
    • 1
  • Wenhui Liang
    • 1
  • Qiuli Chen
    • 1
  • Qingbing Zou
    • 1
  1. 1.College of Command Information SystemsPLA Science and Technology UniversityNanjingChina

Personalised recommendations