Skip to main content

Electrospinning of Phase-Change Materials for Thermal Energy Storage

  • Chapter
  • First Online:

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Thermal energy storage using phase-change materials (PCMs) is one of the effective methods of conserving energy. PCMs can absorb, retain, and release large quantity of thermal energy during phase transitions over a certain temperature range. Electrospinning the combination of conventional PCMs in a polymer matrix for fabricating novel composite fibers that have form-stable and thermoregulating properties has been developed in the past decade. In this chapter, we give an overview of the chemical composition of the novel form-stable PCM composite fibers, the factors affecting and tuning their morphologies and thermal properties, and the different techniques or fabrication methods developed for producing those thermal-storage materials. In the novel form-stable PCM composite fibers, organic PCMs such as paraffin waxes, fatty acids and their blends, polyethylene glycol (PEG), etc., were widely used and encapsulated within the polymer (cellulose acetate (CA), polyethylene terephthalate (PET), polyvinylpyrrolidone (PVP), etc.) fibrous matrix, which served as structure-supporting component. The type of the PCMs and the ratio of PCM/polymer (or PCM content) dramatically affected the morphology and the thermal properties (such as phase transition temperatures and latent of heats) of the fibers. Different approaches (such as melt coaxial electrospinning) are introduced to fabricate the composite fibers with various morphologies and structures. The further directions of developments are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CA:

Cellulose acetate

CBT mixture:

CVL, bisphenol A and 1-dodecanol mixture

CVL:

Crystal violet lactone

DADOEs:

Diacid dioctadecyl esters

LA:

Lauric acid

MA:

Myristic acid

PA:

Palmitic acid

PA6:

Polyamide 6

PAN:

Polyacrylonitrile

PCMs:

Phase-change materials

PEG:

Polyethylene glycol

PET:

Polyethylene terephthalate

PMMA:

Poly(methyl methacrylate)

PS:

Polystyrene

PU:

Polyurethane

PVDF:

Polyvinylidene fluoride

PVP:

Polyvinylpyrrolidone

SA:

Stearic acid

SS:

Stearyl stearate

T c :

Crystallizing temperature

T m :

Melting temperature

TSMs:

Thermal-storage materials

ΔH c :

Latent heat of crystallization or enthalpy of crystallization

ΔH f :

Latent heat of fusion or enthalpy of melting

References

  1. Zalba B, Marin JM, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 23(3):251–283. doi:10.1016/s1359-4311(02)00192-8

    Article  Google Scholar 

  2. Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S (2004) A review on phase change energy storage: materials and applications. Energy Convers Manage 45(9–10):1597–1615. doi:10.1016/j.enconman.2003.09.015

    Article  Google Scholar 

  3. Verma P, Varun P, Singal SK (2008) Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material. Renew Sust Energy Rev 12(4):999–1031. doi:10.1016/j.rser.2006.11.002

    Article  Google Scholar 

  4. Kaygusuz K (2003) Phase change energy storage for solar heating systems. Energy Source 25(8):791–807. doi:10.1080/00908310390207837

    Article  Google Scholar 

  5. Tyagi VV, Buddhi D (2007) PCM thermal storage in buildings: a state of art. Renew Sust Energy Rev 11(6):1146–1166. doi:10.1016/j.rser.2005.10.002

    Article  Google Scholar 

  6. Khudhair AM, Farid MM (2004) A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers Manage 45(2):263–275. doi:10.1016/s0196-8904(03)00131-6

    Article  Google Scholar 

  7. Mondal S (2008) Phase change materials for smart textiles – an overview. Appl Therm Eng 28(11–12):1536–1550. doi:10.1016/j.applthermaleng.2007.08.009

    Article  Google Scholar 

  8. Alkan C, Sari A, Uzun O (2006) Poly(ethylene glycol)/acrylic polymer blends for latent heat thermal energy storage. Aiche J 52(9):3310–3314. doi:10.1002/aic.10928

    Article  Google Scholar 

  9. Pielichowski K, Flejtuch K (2003) Differential scanning calorimetry study of blends of poly(ethylene glycol) with selected fatty acids. Macromol Mater Eng 288(3):259–264. doi:10.1002/mame.200390022

    Article  Google Scholar 

  10. Lin KP, Zhang YP, Xu X, Di HD, Yang R, Qin PH (2004) Modeling and simulation of under-floor electric heating system with shape-stabilized PCM plates. Build Environ 39(12):1427–1434. doi:10.1016/j.buildenv.2004.04.005

    Article  Google Scholar 

  11. Sari A, Alkan C, Kolemen U, Uzun O, Eudragit S (2006) (Methyl methacrylate methacrylic acid copolymer)/fatty acid blends as form-stable phase change material for latent heat thermal energy storage. J Appl Polym Sci 101(3):1402–1406. doi:10.1002/app.23478

    Article  Google Scholar 

  12. McCann JT, Marquez M, Xia YN (2006) Melt coaxial electrospinning: a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers. Nano Lett 6(12):2868–2872. doi:10.1021/nl0620839

    Article  Google Scholar 

  13. Chen CZ, Wang L, Huang Y (2007) Electrospinning of thermo-regulating ultrafine fibers based on polyethylene glycol/cellulose acetate composite. Polymer 48(18):5202–5207. doi:10.1016/j.polymer.2007.06.069

    Article  Google Scholar 

  14. Chen CZ, Wang LG, Huang Y (2008) Morphology and thermal properties of electrospun fatty acids/polyethylene terephthalate composite fibers as novel form-stable phase change materials. Sol Energy Mat Sol C 92(11):1382–1387. doi:10.1016/j.solmat.2008.05.013

    Article  Google Scholar 

  15. Chen CZ, Wang LG, Huang Y (2008) A novel shape-stabilized PCM: electrospun ultrafine fibers based on lauric acid/polyethylene terephthalate composite. Mater Lett 62(20):3515–3517. doi:10.1016/j.matlet.2008.03.034

    Article  Google Scholar 

  16. Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7(3):216–223. doi:10.1088/0957-4484/7/3/009

    Article  Google Scholar 

  17. Fang X, Reneker DH (1997) DNA fibers by electrospinning. J Macromol Sci Phys B36(2):169–173. doi:10.1080/00222349708220422

    Article  Google Scholar 

  18. Jaeger R, Bergshoef MM, Batlle CMI, Schonherr H, Vancso GJ (1998) Electrospinning of ultra-thin polymer fibers. Macromol Symp 127:141–150. doi:10.1002/masy.19981270119

    Article  Google Scholar 

  19. Bergshoef MM, Vancso GJ (1999) Transparent nanocomposites with ultrathin, electrospun nylon-4,6 fiber reinforcement. Adv Mater 11(16):1362–1365. doi:10.1002/(SICI)1521-4095(199911)11:16<1362::AID-ADMA1362>3.0.CO;2-X

    Article  Google Scholar 

  20. Sarier N, Onder E (2012) Organic phase change materials and their textile applications: an overview. Thermochim Acta 540:7–60. doi:10.1016/j.tca.2012.04.013

    Article  Google Scholar 

  21. Hong Y, Ge XS (2000) Preparation of polyethylene-paraffin compound as a form-stable solid–liquid phase change material. Sol Energy Mat Sol C 64(1):37–44. doi:10.1016/s0927-0248(00)00041-6

    Article  Google Scholar 

  22. Sari A (2004) Form-stable paraffin/high density polyethylene composites as solid–liquid phase change material for thermal energy storage: preparation and thermal properties. Energy Convers Manage 45(13–14):2033–2042. doi:10.1016/j.enconman.2003.10.022

    Article  Google Scholar 

  23. Lin KP, Zhang YP, Xu X, Di HF, Yang R, Qin PH (2005) Experimental study of under-floor electric heating system with shape-stabilized PCM plates. Energy Build 37(3):215–220. doi:10.1016/j.enbuild.2004.06.017

    Article  Google Scholar 

  24. Zhang YP, Lin KP, Yang R, Di HF, Jiang Y (2006) Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings. Energy Build 38(10):1262–1269. doi:10.1016/j.enbuild.2006.02.009

    Article  Google Scholar 

  25. Wang L, Ryan AJ (2011) Chapter 1: Introduction to electrospinning. In: Electrospinning for tissue regeneration. Woodhead Publishing Ltd, Cambridge

    Google Scholar 

  26. Larsen G, Velarde-Ortiz R, Minchow K, Barrero A, Loscertales IG (2003) A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameters in the submicrometer and micrometer range via sol–gel chemistry and electrically forced liquid jets. J Am Chem Soc 125(5):1154–1155. doi:10.1021/ja028983i

    Article  Google Scholar 

  27. Li D, Xia YN (2004) Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett 4(5):933–938. doi:10.1021/nl049590f

    Article  Google Scholar 

  28. Sun ZC, Zussman E, Yarin AL, Wendorff JH, Greiner A (2003) Compound core-shell polymer nanofibers by co-electrospinning. Adv Mater 15(22):1929–1932. doi:10.1002/adma.200305136

    Article  Google Scholar 

  29. Alay S, Gode F, Alkan C (2010) Preparation and characterization of poly(methylmethacrylate-co-glycidyl methacrylate)/n-hexadecane nanocapsules as a fiber additive for thermal energy storage. Fiber Polym 11(8):1089–1093. doi:10.1007/s12221-010-1089-2

    Article  Google Scholar 

  30. Perez-Masia R, Lopez-Rubio A, Lagaron JM (2013) Development of zein-based heat-management structures for smart food packaging. Food Hydrocolloid 30(1):182–191. doi:10.1016/j.foodhyd.2012.05.010

    Article  Google Scholar 

  31. Chen CZ, Wang LG, Huang Y (2009) Role of M(n) of PEG in the morphology and properties of electrospun PEG/CA composite fibers for thermal energy storage. Aiche J 55(3):820–827. doi:10.1002/aic.11708

    Article  Google Scholar 

  32. Chen CZ, Wang LG, Huang Y (2011) Electrospun phase change fibers based on polyethylene glycol/cellulose acetate blends. Appl Energy 88(9):3133–3139. doi:10.1016/j.apenergy.2011.02.026

    Article  Google Scholar 

  33. Seifpoor M, Nouri M, Mokhtari J (2011) Thermo-regulating nanofibers based on nylon 6,6/polyethylene glycol blend. Fiber Polym 12(6):706–714. doi:10.1007/s12221-011-0706-z

    Article  Google Scholar 

  34. Thuy TTN, Lee JG, Park JS (2011) Fabrication and characterization of coaxial electrospun polyethylene glycol/polyvinylidene fluoride (core/sheath) composite non-woven mats. Macromol Res 19(4):370–378. doi:10.1007/s13233-011-0409-8

    Article  Google Scholar 

  35. Do CV, Thuy TTN, Park JS (2012) Fabrication of polyethylene glycol/polyvinylidene fluoride core/shell nanofibers via melt electrospinning and their characteristics. Sol Energy Mat Sol C 104:131–139. doi:10.1016/j.solmat.2012.04.029

    Article  Google Scholar 

  36. Thuy TTN, Park JS (2011) Fabrication of electrospun nonwoven mats of polyvinylidene fluoride/polyethylene glycol/fumed silica for use as energy storage materials. J Appl Polym Sci 121(6):3596–3603. doi:10.1002/app.34148

    Article  Google Scholar 

  37. Cai YB, Ke HZ, Dong J, Wei QF, Lin JL, Zhao Y, Song L, Hu YA, Huang FL, Gao WD, Fong H (2011) Effects of nano-SiO2 on morphology, thermal energy storage, thermal stability, and combustion properties of electrospun lauric acid/PET ultrafine composite fibers as form-stable phase change materials. Appl Energy 88(6):2106–2112. doi:10.1016/j.apenergy.2010.12.071

    Article  Google Scholar 

  38. Cai YB, Ke HZ, Lin L, Fei XZ, Wei QF, Song L, Hu Y, Fong H (2012) Preparation, morphology and thermal properties of electrospun fatty acid eutectics/polyethylene terephthalate form-stable phase change ultrafine composite fibers for thermal energy storage. Energy Convers Manage 64:245–255. doi:10.1016/j.enconman.2012.04.018

    Article  Google Scholar 

  39. Cai YB, Gao CT, Xu XL, Fu Z, Fei XZ, Zhao Y, Chen Q, Liu XZ, Wei QF, He GF, Fong H (2012) Electrospun ultrafine composite fibers consisting of lauric acid and polyamide 6 as form-stable phase change materials for storage and retrieval of solar thermal energy. Sol Energy Mat Sol C 103:53–61. doi:10.1016/j.solmat.2012.04.031

    Article  Google Scholar 

  40. Cai YB, Xu XL, Gao CT, Wang L, Wei QF, Song L, Hu Y, Qiao H, Zhao Y, Chen Q, Fong H (2012) Effects of carbon nanotubes on morphological structure, thermal and flammability properties of electrospun composite fibers consisting of lauric acid and polyamide 6 as thermal energy storage materials. Fiber Polym 13(7):837–845. doi:10.1007/s12221-012-0837-x

    Article  Google Scholar 

  41. Chen CZ, Wang LG, Huang Y (2009) Ultrafine electrospun fibers based on stearyl stearate/polyethylene terephthalate composite as form stable phase change materials. Chem Eng J 150(1):269–274. doi:10.1016/j.cej.2009.03.007

    Article  Google Scholar 

  42. Ke HZ, Li DW, Zhang HD, Cai YB, Huang FL, Wei QF (2012) Electrospun capric acid/polyethylene terephthalate composite nanofibres for storage and retrieval of thermal energy. Mater Res Innov 16(6):429–437. doi:10.1179/1433075x12y.0000000042

    Article  Google Scholar 

  43. Ke HZ, Li DW, Zhang HD, Wang XL, Cai YB, Huang FL, Wei QF (2013) Electrospun form-stable phase change composite nanofibers consisting of capric acid-based binary fatty acid eutectics and polyethylene terephthalate. Fiber Polym 14(1):89–99. doi:10.1007/s12221-013-0089-4

    Article  Google Scholar 

  44. Li FY, Zhao Y, Wang S, Han D, Jiang L, Song YL (2009) Thermochromic core-shell nanofibers fabricated by melt coaxial electrospinning. J Appl Polym Sci 112(1):269–274. doi:10.1002/app.29384

    Article  Google Scholar 

  45. Malherbe I, Sanderson RD, Smit E (2010) Reversibly thermochromic micro-fibres by coaxial electrospinning. Polymer 51(22):5037–5043. doi:10.1016/j.polymer.2010.09.018

    Article  Google Scholar 

  46. Wang N, Chen HY, Lin L, Zhao Y, Cao XY, Song YL, Jiang L (2010) Multicomponent phase change microfibers prepared by temperature control multifluidic electrospinning. Macromol Rapid Commun 31(18):1622–1627. doi:10.1002/marc.201000185

    Article  Google Scholar 

  47. Faridi-Majidi R, Madani M, Sharifi-Sanjani N, Khoee S, Fotouhi A (2012) Multi-phase composite nanofibers via electrospinning of latex containing nanocapsules with core-shell morphology. Polym-Plast Technol 51(4):364–368. doi:10.1080/03602559.2011.639326

    Article  Google Scholar 

  48. Chen CZ, Liu SS, Liu WM, Zhao YY, Lu YZ (2012) Synthesis of novel solid–liquid phase change materials and electrospinning of ultrafine phase change fibers. Sol Energy Mat Sol C 96(1):202–209. doi:10.1016/j.solmat.2011.09.057

    Article  Google Scholar 

  49. Hu W, Yu X (2012) Encapsulation of bio-based PCM with coaxial electrospun ultrafine fibers. RSC Adv 2(13):5580–5584. doi:10.1039/c2ra20532g

    Article  Google Scholar 

  50. Chen CZ, Wang LG, Huang Y (2009) Crosslinking of the electrospun polyethylene glycol/cellulose acetate composite fibers as shape-stabilized phase change materials. Mater Lett 63(5):569–571. doi:10.1016/j.matlet.2008.11.033

    Article  Google Scholar 

  51. Zong XH, Kim K, Fang DF, Ran SF, Hsiao BS, Chu B (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43(16):4403–4412. doi:10.1016/S0032-3861(02)00275-6

    Article  Google Scholar 

  52. Li Y, Huang ZM, Lu YD (2006) Electrospinning of nylon-6,66,1010 terpolymer. Eur Polym J 42(7):1696–1704. doi:10.1016/j.eurpolymj.2006.02.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linge Wang or Yong Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, L., Chen, C., Huang, Y. (2014). Electrospinning of Phase-Change Materials for Thermal Energy Storage. In: Ding, B., Yu, J. (eds) Electrospun Nanofibers for Energy and Environmental Applications. Nanostructure Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54160-5_9

Download citation

Publish with us

Policies and ethics