Electrospun Nanofibers for Air Filtration

  • Na Wang
  • Xue Mao
  • Shichao Zhang
  • Jianyong Yu
  • Bin Ding
Part of the Nanostructure Science and Technology book series (NST)


Fine particle pollution resulting from the rapid urbanization and industrialization is one of the most serious sources of air pollution. In response to the recognized threats of fine particles to the environment and human bodies, the pursuit of novel, high-performance, energy saving, and environmentally friendly filter medium has gained great interest in recent years. Electrospun nanofibrous membranes, as one of the utmost promising and versatile filter media for fine particle filtration, possess several fascinating features such as remarkable specific surface area, high open porosity, and interconnected porous structure. More significantly, electrospun nanofiber-based filter media are expected to have extremely high filtration efficiency for fine particle and relatively low pressure drop due to the unique structure of electrospun nanofibers. In this chapter, we summarize the recent progress in the development of electrospun nanofibrous membranes (e.g., organic, hybrid, inorganic) for fine particle filtration, describe the types of nanofibrous materials that have been developed, and discuss their structure variables and particle filtration performance in detail. This chapter may trigger the development of advanced nanofibrous filter media for fine particle emissions from anthropogenic polluted atmosphere.


Filter Medium Filtration Efficiency Electrospun Nanofibers Filtration Performance Fibrous Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2013BAC01B02), National Basic Research Program of China (973 Program, 2011CB606103), the National Natural Science Foundation of China (No. 51173022 and U1232116), the Huo Yingdong Foundation (131070), and the Program for New Century Talents of the University in China.


  1. 1.
    Rodríguez S, Querol X, Alastuey A, Viana MM, Alarcón M, Mantilla E, Ruiz CR (2004) Comparative p M10–PM2.5 source contribution study at rural, urban and industrial sites during PM episodes in Eastern Spain. Sci Total Environ 328(1–3):95–113, CrossRefGoogle Scholar
  2. 2.
    Querol X, Alastuey A, Rodriguez S, Plana F, Mantilla E, Ruiz CR (2001) Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources. Atmos Environ 35(5):845–858, CrossRefGoogle Scholar
  3. 3.
    Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151(2):362–367, CrossRefGoogle Scholar
  4. 4.
    Peukert W (1998) High temperature filtration in the process industry. Filtr Separat 35(5): 461–464, CrossRefGoogle Scholar
  5. 5.
    Song Y, Zhang Y, Xie S, Zeng L, Zheng M, Salmon LG, Shao M, Slanina S (2006) Source apportionment of PM2.5 in Beijing by positive matrix factorization. Atmos Environ 40(8):1526–1537, CrossRefGoogle Scholar
  6. 6.
    Wang CS, Otani Y (2012) Removal of nanoparticles from gas streams by fibrous filters: a review. Ind Eng Chem Res. doi: 10.1021/ie300574m
  7. 7.
    Adiletta JG (1999) Fibrous nonwoven web. US Patent 5,954,962, 21 Sept 1999Google Scholar
  8. 8.
    Hung CH, Leung WWF (2011) Filtration of nano-aerosol using nanofiber filter under low Peclet number and transitional flow regime. Sep Purif Technol 79(1):34–42, CrossRefGoogle Scholar
  9. 9.
    Yoon K, Hsiao BS, Chu B (2008) Functional nanofibers for environmental applications. J Mater Chem 18(44):5326–5334. doi: 10.1039/b804128h CrossRefGoogle Scholar
  10. 10.
    Ma H, Hsiao BS, Chu B (2011) Thin-film nanofibrous composite membranes containing cellulose or chitin barrier layers fabricated by ionic liquids. Polymer 52(12):2594–2599. doi: 10.1016/j.polymer.2011.03.051 CrossRefGoogle Scholar
  11. 11.
    Wang N, Wang X, Ding B, Yu J, Sun G (2012) Tunable fabrication of three-dimensional polyamide-66 nano-fiber/nets for high efficiency fine particulate filtration. J Mater Chem 22(4):1445–1452. doi: 10.1039/c1jm14299b CrossRefGoogle Scholar
  12. 12.
    Tanaka S, Doi A, Nakatani N, Katayama Y, Miyake Y (2009) Synthesis of ordered mesoporous carbon films, powders, and fibers by direct triblock-copolymer-templating method using an ethanol/water system. Carbon 47(11):2688–2698, CrossRefGoogle Scholar
  13. 13.
    Wang D, Sun G, Chiou BS (2007) A high-throughput, controllable, and environmentally benign fabrication process of thermoplastic nanofibers. Macromol Mater Eng 292(4):407–414. doi: 10.1002/mame.200600460 CrossRefGoogle Scholar
  14. 14.
    Qiu P, Mao C (2010) Biomimetic branched hollow fibers templated by self-assembled fibrous polyvinylpyrrolidone structures in aqueous solution. ACS Nano 4(3):1573–1579. doi: 10.1021/nn9009196 CrossRefGoogle Scholar
  15. 15.
    Wang X, Li Y (2002) Selected-control hydrothermal synthesis of α- and β-MnO2 single crystal nanowires. J Am Chem Soc 124(12):2880–2881. doi: 10.1021/ja0177105 CrossRefGoogle Scholar
  16. 16.
    Fong H, Chun I, Reneker DH (1999) Beaded nanofibers formed during electrospinning. Polymer 40(16):4585–4592, CrossRefGoogle Scholar
  17. 17.
    Ding B, Kim HY, Lee SC, Lee DR, Choi KJ (2002) Preparation and characterization of nanoscaled poly(vinyl alcohol) fibers via electrospinning. Fiber Polym 3(2):73–79. doi: 10.1007/bf02875403 CrossRefGoogle Scholar
  18. 18.
    Ding B, Kimura E, Sato T, Fujita S, Shiratori S (2004) Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning. Polymer 45(6):1895–1902. doi: 10.1016/j.polymer.2004.01.026 CrossRefGoogle Scholar
  19. 19.
    Wu J, Wang N, Zhao Y, Jiang L (2013) Electrospinning of multilevel structured functional micro-/nanofibers and their applications. J Mater Chem A 1(25):7290–7305. doi: 10.1039/c3ta10451f CrossRefGoogle Scholar
  20. 20.
    Thavasi V, Singh G, Ramakrishna S (2008) Electrospun nanofibers in energy and environmental applications. Energ Environ Sci 1(2):205–221. doi: 10.1039/b809074m CrossRefGoogle Scholar
  21. 21.
    Sahay R, Kumar PS, Sridhar R, Sundaramurthy J, Venugopal J, Mhaisalkar SG, Ramakrishna S (2012) Electrospun composite nanofibers and their multifaceted applications. J Mater Chem 22(26):12953–12971. doi: 10.1039/c2jm30966a CrossRefGoogle Scholar
  22. 22.
    Zhou C, Chu R, Wu R, Wu Q (2011) Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules 12:2617–2625. doi: 10.1021/bm200401p CrossRefGoogle Scholar
  23. 23.
    Si Y, Ren T, Li Y, Ding B, Yu J (2012) Fabrication of magnetic polybenzoxazine-based carbon nanofibers with Fe3O4 inclusions with a hierarchical porous structure for water treatment. Carbon 50(14):5176–5185. doi: 10.1016/j.carbon.2012.06.059 CrossRefGoogle Scholar
  24. 24.
    Yeom B, Shim E, Pourdeyhimi B (2010) Boehmite nanoparticles incorporated electrospun nylon-6 nanofiber web for new electret filter media. Macromol Res 18(9):884–890. doi: 10.1007/s13233-010-0910-5 CrossRefGoogle Scholar
  25. 25.
    Gule NP, de Kwaadsteniet M, Cloete TE, Klumperman B (2012) Electrospun poly(vinyl alcohol) nanofibres with biocidal additives for application in filter media, 1-properties affecting fibre morphology and characterisation. Macromol Mater Eng 297(7):609–617. doi: 10.1002/mame.201100275 CrossRefGoogle Scholar
  26. 26.
    Kim SJ, Nam YS, Rhee DM, Park HS, Park WH (2007) Preparation and characterization of antimicrobial polycarbonate nanofibrous membrane. Eur Polym J 43(8):3146–3152, CrossRefGoogle Scholar
  27. 27.
    Zhang S, Shim WS, Kim J (2009) Design of ultra-fine nonwovens via electrospinning of Nylon 6: spinning parameters and filtration efficiency. Mater Design 30(9):3659–3666, CrossRefGoogle Scholar
  28. 28.
    Ahn YC, Park SK, Kim GT, Hwang YJ, Lee CG, Shin HS, Lee JK (2006) Development of high efficiency nanofilters made of nanofibers. Current Applied Physics 6(6):1030–1035, CrossRefGoogle Scholar
  29. 29.
    Heikkilä P, Taipale A, Lehtimäki M, Harlin A (2008) Electrospinning of polyamides with different chain compositions for filtration application. Polym Eng Sci 48(6):1168–1176. doi: 10.1002/pen.21070 CrossRefGoogle Scholar
  30. 30.
    Gibson P, Schreuder GH, Rivin D (2001) Transport properties of porous membranes based on electrospun nanofibers. Colloid Surf A: Physicochem Eng Asp 187–188:469–481, CrossRefGoogle Scholar
  31. 31.
    Kim G, Ahn Y, Lee J (2008) Characteristics of nylon 6 nanofilter for removing ultra fine particles. Korean J Chem Eng 25(2):368–372. doi: 10.1007/s11814-008-0061-y CrossRefGoogle Scholar
  32. 32.
    Faccini M, Vaquero C, Amantia D (2012) Development of protective clothing against nanoparticle based on electrospun nanofibers. J Nanomater 2012:1–9. doi: 10.1155/2012/892894 CrossRefGoogle Scholar
  33. 33.
    Guibo Y, Qing Z, Yahong Z, Yin Y, Yumin Y (2013) The electrospun polyamide 6 nanofiber membranes used as high efficiency filter materials: filtration potential, thermal treatment, and their continuous production. J Appl Polym Sci 128(2):1061–1069. doi: 10.1002/app.38211 CrossRefGoogle Scholar
  34. 34.
    Fitzer E (1989) Pan-based carbon fibers-present state and trend of the technology from the viewpoint of possibilities and limits to influence and to control the fiber properties by the process parameters. Carbon 27(5):621–645, CrossRefGoogle Scholar
  35. 35.
    Chen JC, Harrison IR (2002) Modification of polyacrylonitrile (PAN) carbon fiber precursor via post-spinning plasticization and stretching in dimethyl formamide (DMF). Carbon 40(1):25–45, CrossRefGoogle Scholar
  36. 36.
    Barhate RS, Loong CK, Ramakrishna S (2006) Preparation and characterization of nanofibrous filtering media. J Membrane Sci 283(1–2):209–218, CrossRefGoogle Scholar
  37. 37.
    Yun KM, Hogan CJ Jr, Matsubayashi Y, Kawabe M, Iskandar F, Okuyama K (2007) Nanoparticle filtration by electrospun polymer fibers. Chem Eng Sci 62(17):4751–4759, CrossRefGoogle Scholar
  38. 38.
    Kim K, Lee C, Kim I, Kim J (2009) Performance modification of a melt-blown filter medium via an additional nano-web layer prepared by electrospinning. Fiber Polym 10(1):60–64. doi: 10.1007/s12221-009-0060-6 CrossRefGoogle Scholar
  39. 39.
    Yun KM, Suryamas AB, Iskandar F, Bao L, Niinuma H, Okuyama K (2010) Morphology optimization of polymer nanofiber for applications in aerosol particle filtration. Sep Purif Technol 75(3):340–345. doi: 10.1016/j.seppur.2010.09.002 CrossRefGoogle Scholar
  40. 40.
    Mei Y, Wang Z, Li X (2013) Improving filtration performance of electrospun nanofiber mats by a bimodal method. J Appl Polym Sci 128(2):1089–1094. doi: 10.1002/app.38296 CrossRefGoogle Scholar
  41. 41.
    Zhang Q, Welch J, Park H, Wu CY, Sigmund W, Marijnissen JCM (2010) Improvement in nanofiber filtration by multiple thin layers of nanofiber mats. J Aerosol Sci 41(2):230–236, CrossRefGoogle Scholar
  42. 42.
    Mao X, Chen Y, Si Y, Li Y, Wan H, Yu J, Sun G, Ding B (2013) Novel fluorinated polyurethane decorated electrospun silica nanofibrous membranes exhibiting robust waterproof and breathable performances. RSC Adv 3(20):7562–7569. doi: 10.1039/c3ra23326j CrossRefGoogle Scholar
  43. 43.
    Ge J, Si Y, Fu F, Wang J, Yang J, Cui L, Ding B, Yu J, Sun G (2013) Amphiphobic fluorinated polyurethane composite microfibrous membranes with robust waterproof and breathable performances. RSC Adv 3(7):2248–2255. doi: 10.1039/c2ra22111j CrossRefGoogle Scholar
  44. 44.
    Osman MA, Mittal V, Morbidelli M, Suter UW (2003) Polyurethane adhesive nanocomposites as gas permeation barrier. Macromolecules 36(26):9851–9858. doi: 10.1021/ma035077x CrossRefGoogle Scholar
  45. 45.
    Sambaer W, Zatloukal M, Kimmer D (2011) 3D modeling of filtration process via polyurethane nanofiber based nonwoven filters prepared by electrospinning process. Chem Eng Sci 66(4):613–623, Google Scholar
  46. 46.
    Sambaer W, Zatloukal M, Kimmer D (2012) 3D air filtration modeling for nanofiber based filters in the ultrafine particle size range. Chem Eng Sci 82:299–311, CrossRefGoogle Scholar
  47. 47.
    Wang N, Raza A, Si Y, Yu J, Sun G, Ding B (2013) Tortuously structured polyvinyl chloride/polyurethane fibrous membranes for high-efficiency fine particulate filtration. J Colloid Interface Sci 398:240–246, CrossRefGoogle Scholar
  48. 48.
    Wang J, Raza A, Si Y, Cui L, Ge J, Ding B, Yu J (2012) Synthesis of superamphiphobic breathable membranes utilizing SiO2 nanoparticles decorated fluorinated polyurethane nanofibers. Nanoscale 4(23):7549–7556. doi: 10.1039/c2nr32883f CrossRefGoogle Scholar
  49. 49.
    Stejskal J, Kratochvíl P, Helmstedt M (1996) Polyaniline dispersions. 5. Poly(vinyl alcohol) and poly(N-vinylpyrrolidone) as steric stabilizers. Langmuir 12(14):3389–3392. doi: 10.1021/la9506483 CrossRefGoogle Scholar
  50. 50.
    Ding B, Kim HY, Lee SC, Shao CL, Lee DR, Park SJ, Kwag GB, Choi KJ (2002) Preparation and characterization of a nanoscale poly(vinyl alcohol) fiber aggregate produced by an electrospinning method. J Polym Sci Polym Phy 40(13):1261–1268. doi: 10.1002/polb.10191 CrossRefGoogle Scholar
  51. 51.
    Qin XH, Wang SY (2006) Filtration properties of electrospinning nanofibers. J Appl Polym Sci 102(2):1285–1290. doi: 10.1002/app.24361 CrossRefGoogle Scholar
  52. 52.
    Deitzel JM, Kleinmeyer JD, Hirvonen JK, Beck Tan NC (2001) Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer 42(19):8163–8170, CrossRefGoogle Scholar
  53. 53.
    Qin XH, Wang SY (2008) Electrospun nanofibers from crosslinked poly(vinyl alcohol) and its filtration efficiency. J Appl Polym Sci 109(2):951–956. doi: 10.1002/app.28003 CrossRefGoogle Scholar
  54. 54.
    Yu DG, Li XY, Wang X, Chian W, Liao YZ, Li Y (2013) Zero-order drug release cellulose acetate nanofibers prepared using coaxial electrospinning. Cellulose 20(1):379–389. doi: 10.1007/s10570-012-9824-z CrossRefGoogle Scholar
  55. 55.
    Yoo HS, Kim TG, Park TG (2009) Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Delivery Rev 61(12):1033–1042, CrossRefGoogle Scholar
  56. 56.
    Jirsak O, Sanetrnik F, Lukas D, Kotek V, Martinova L, Chaloupek J (2009) A method of nanofibres production from a polymer solution using electrostatic spinning and a device for carrying out the method. EP Patent 1,673,493, 8 Aug 2009Google Scholar
  57. 57.
    Niu H, Lin T, Wang X (2009) Needleless electrospinning. I. A comparison of cylinder and disk nozzles. J Appl Polym Sci 114(6):3524–3530. doi: 10.1002/app.30891 CrossRefGoogle Scholar
  58. 58.
    Li J, Gao F, Liu L, Zhang Z (2013) Needleless electro-spun nanofibers used for filtration of small particles. Express Polym Lett 7(8):683–689. doi: 10.3144/expresspolymlett.2013.65 CrossRefGoogle Scholar
  59. 59.
    Devanand K, Selser JC (1990) Polyethylene oxide does not necessarily aggregate in water. Nature 343(6260):739–741. doi: 10.1038/343739a0 CrossRefGoogle Scholar
  60. 60.
    Leung WWF, Hung CH, Yuen PT (2010) Effect of face velocity, nanofiber packing density and thickness on filtration performance of filters with nanofibers coated on a substrate. Sep Purif Technol 71(1):30–37. doi: 10.1016/j.seppur.2009.10.017 CrossRefGoogle Scholar
  61. 61.
    Patanaik A, Jacobs V, Anandjiwala RD (2010) Performance evaluation of electrospun nanofibrous membrane. J Membrane Sci 352(1–2):136–142, CrossRefGoogle Scholar
  62. 62.
    Grafe TH, Graham KM (2003) Nanofiber webs from electrospinning. In: Proceedings of the 5th international conference on nonwovens in filtration, Stuttgart, p 1Google Scholar
  63. 63.
    Kanafchian M, Valizadeh M, Haghi A (2011) Electrospun nanofibers with application in nanocomposites. Korean J Chem Eng 28(2):428–439. doi: 10.1007/s11814-010-0376-3 CrossRefGoogle Scholar
  64. 64.
    Hsiao HY, Huang CM, Liu YY, Kuo YC, Chen H (2012) Effect of air blowing on the morphology and nanofiber properties of blowing-assisted electrospun polycarbonates. J Appl Polym Sci 124(6):4904–4914. doi: 10.1002/app.35599 Google Scholar
  65. 65.
    Morozov VN, Mikheev AY (2012) Water-soluble polyvinylpyrrolidone nanofilters manufactured by electrospray-neutralization technique. J Membrane Sci 403–404:110–120, CrossRefGoogle Scholar
  66. 66.
    Uyar T, Balan A, Toppare L, Besenbacher F (2009) Electrospinning of cyclodextrin functionalized poly(methyl methacrylate) (PMMA) nanofibers. Polymer 50(2):475–480, CrossRefGoogle Scholar
  67. 67.
    Cho D, Naydich A, Frey MW, Joo YL (2013) Further improvement of air filtration efficiency of cellulose filters coated with nanofibers via inclusion of electrostatically active nanoparticles. Polymer 54(9):2364–2372, CrossRefGoogle Scholar
  68. 68.
    Duan G, Jiang S, Chen S, Hou H (2010) Heat and solvent resistant electrospun polybenzoxazole nanofibers from methoxy-containing polyaramide. J Nanomater 2010:1–5. doi: 10.1155/2010/219562 CrossRefGoogle Scholar
  69. 69.
    Nakata K, Hun Kim S, Ohkoshi Y, Gotoh Y, Nagura M (2007) Electrospinning of poly (ether sulfone) and evaluation of the filtration efficiency. Sen’i Gakkaishi 63(12):307–312, CrossRefGoogle Scholar
  70. 70.
    Moon S, Choi J, Farris RJ (2008) Preparation of aligned polyetherimide fiber by electrospinning. J Appl Polym Sci 109(2):691–694. doi: 10.1002/app.27172 CrossRefGoogle Scholar
  71. 71.
    Fukushima S, Karube Y, Kawakami H (2010) Preparation of ultrafine uniform electrospun polyimide nanofiber. Polym J 42(6):514–518. doi: 10.1038/pj.2010.33 CrossRefGoogle Scholar
  72. 72.
    Huang C, Chen S, Reneker DH, Lai C, Hou H (2006) High-strength mats from electrospun poly(p-phenylene biphenyltetracarboximide) nanofibers. Adv Mater 18(5):668–671. doi: 10.1002/adma.200501806 CrossRefGoogle Scholar
  73. 73.
    Shao C, Kim H, Gong J, Lee D (2002) A novel method for making silica nanofibres by using electrospun fibres of polyvinylalcohol/silica composite as precursor. Nanotechnology 13(5):635. doi: 10.1088/0957-4484/13/5/319 CrossRefGoogle Scholar
  74. 74.
    Yu H, Guo J, Zhu S, Li Y, Zhang Q, Zhu M (2012) Preparation of continuous alumina nanofibers via electrospinning of PAN/DMF solution. Mater Lett 74:247–249, CrossRefGoogle Scholar
  75. 75.
    Zhao Y, Tang Y, Guo Y, Bao X (2010) Studies of electrospinning process of zirconia nanofibers. Fiber Polym 11(8):1119–1122. doi: 10.1007/s12221-010-1119-0 CrossRefGoogle Scholar
  76. 76.
    Guo M, Ding B, Li X, Wang X, Yu J, Wang M (2009) Amphiphobic nanofibrous silica mats with flexible and high-heat-resistant properties. J Phys Chem C 114(2):916–921. doi: 10.1021/jp909672r CrossRefGoogle Scholar
  77. 77.
    Zhao F, Wang X, Ding B, Lin J, Hu J, Si Y, Yu J, Sun G (2011) Nanoparticle decorated fibrous silica membranes exhibiting biomimetic superhydrophobicity and highly flexible properties. RSC Adv 1(8):1482–1488. doi: 10.1039/c1ra00605c CrossRefGoogle Scholar
  78. 78.
    Yang L, Raza A, Si Y, Mao X, Shang Y, Ding B, Yu J, Deyab SS (2012) Synthesis of superhydrophobic silica nanofibrous membranes with robust thermal stability and flexibility via in situ polymerization. Nanoscale 4(20):6581–6587. doi: 10.1039/c2nr32095a CrossRefGoogle Scholar
  79. 79.
    Mao X, Si Y, Chen Y, Yang L, Zhao F, Ding B, Yu J (2012) Silica nanofibrous membranes with robust flexibility and thermal stability for high-efficiency fine particulate filtration. RSC Adv 2(32):12216. doi: 10.1039/c2ra22086e CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Na Wang
    • 1
  • Xue Mao
    • 1
  • Shichao Zhang
    • 1
  • Jianyong Yu
    • 1
    • 2
  • Bin Ding
    • 1
    • 2
  1. 1.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghaiChina
  2. 2.Nanomaterials Research Center, Modern Textile InstituteDonghua UniversityShanghaiChina

Personalised recommendations