Skip to main content

Electrophysiologic and Biochemical Mechanisms Underlying Malignant Ventricular Arrhythmias during Early Myocardial Ischemia

  • Conference paper
Pathophysiology and Rational Pharmacotherapy of Myocardial Ischemia

Abstract

Sudden cardiac death accounts for over 300,000 deaths per year in the United States alone [111]. It most often occurs in the setting of diffuse coronary artery disease [9], and in about 25% of cases of sudden cardiac death, the event is the initial presentation of coronary disease [87]. Death is most often due to malignant ventricular arrhythmias including complex premature ventricular complexes or ventricular tachycardia which culminate in the development of ventricular fibrillation [23].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams RJ, Cohen DW, Gupte S, Johnson JD, Wallick ET, Wang T, Schwartz A (1979) In vitro effects of palmitylcarnitine on cardiac plasma membrane Na,K-ATPase, and sarcoplasmic reticulum Ca<sup>2+</sup>-ATPase and Ca<sup>2+</sup> transport. J Biol Chem 254:12404–12410

    PubMed  CAS  Google Scholar 

  2. Adams RJ, Pitts BJ, McMillin-Wood J, Gende OA, Wallnick ET, Schwartz A (1979) Effect of palmitylcarnitine on ouabain binding to Na,K-ATPase. J Mol Cell Cardiol 11:941–959

    PubMed  CAS  Google Scholar 

  3. Ahumada GG, Bergmann SR, Carlson E, Corr PB, Sobel BE (1979) Augmentation of cyclic AMP content induced by lysophosphatidyl choline in rabbit hearts. Cardiovasc Res 13:377–382

    PubMed  CAS  Google Scholar 

  4. Akita H, Creer MH, Yamada KA, Sobel BE, Corr PB (1986) Electrophysiologic effects of intracellular lysophosphoglycerides and their accumulation in cardiac lymph with myocardial ischemia in dogs. J Clin Invest 78:271–280

    PubMed  CAS  Google Scholar 

  5. Allen JD, Shanks RG, Zaida SA (1971) Effects of lignocaine and propranolol on experimental cardiac arrhythmias. Br J Pharmacol 42:1–12

    PubMed  CAS  Google Scholar 

  6. Anderson GJ, Reiser J, Gough WB, Nydegger CC (1983) Intramyocardial current flow in acute coronary occlusion in the canine heart. J Am Coll Cardio 11:436–443

    Google Scholar 

  7. Antzelevitch C, Jalife J, Moe GK (1980) Characteristicts of reflection as a mechanism of reentrant arrhythmias and its relationship to parasystole. Circulation 61:182–191

    PubMed  CAS  Google Scholar 

  8. Arnsdorf MF, Sawicki GJ (1981) The effects of lysophosphatidylcholine, a toxic metabolite of ischemia, on the components of cardiac excitability in sheep Purkinje fibers. Circ Res 49:16–30

    PubMed  CAS  Google Scholar 

  9. Bashe VVJ Jr, Baba N, Keller MD, Geer JC, Anthony JR (1975) Pathology of atherosclerotic heart disease in sudden death. II. The significance of myocardial infarction. Circulation 52 (Suppl III):III-63 -III-69

    Google Scholar 

  10. Benfey BG, Elfellah MS, Ogilvie RI, Varma DR (1984) Anti-arrhythmic effects of prazosin and propranolol during coronary artery occlusion and reperfusion in dogs and pigs. Br J Pharmaco 182:717–725

    Google Scholar 

  11. Berridge MJ (1984) Inositol trisphosphate and diacylglycerol as second messengers. Biochem J 220:345–360

    PubMed  CAS  Google Scholar 

  12. Berridge MJ (1987) Inositol trisphosphate and diacylglycerol: two interacting second messengers. Ann Rev Biochem 56:159–193

    PubMed  CAS  Google Scholar 

  13. Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321

    PubMed  CAS  Google Scholar 

  14. Bigger JT Jr, Dresdale RJ, Heissenbuttel RH, Weld FM, Wit AL (1977) Ventricular arrhythmias in ischemic heart disease: Mechanisms, prevalence, significance and management. Progr Cardiovasc Dis 19:255–300

    Google Scholar 

  15. Boineau JP, Cox JL (1973) Slow ventricular activation in acute myocardial infarction: A source of reentrant premature ventricular contraction. Circulation 48:702–713

    PubMed  CAS  Google Scholar 

  16. Brooks WW, Verrier RL, Lown B (1980) Protective effect of verapamil on vulnerability to ventricular fibrillation during myocardial ischaemia and reperfusion. Cardiovasc Res 14:295–302

    PubMed  CAS  Google Scholar 

  17. Brown JH, Buxton IL, Brunton LL (1985) a<sub>1</sub>-Adrenergic and muscarinic cholinergic stimulation of phosphoinositide hydrolysis in adult rat cardiomyocytes. Circ Res 57:532–537

    PubMed  CAS  Google Scholar 

  18. Burch RM, Luini A, Axelrod J (1986) Phospholipase A2 and phospholipase C are activated by distinct GTP-binding proteins in response to a<sub>1</sub>-adrenergic stimulation in FRTL5 thyroid cells. Proc Natl Acad Sci 83:7201–7205

    PubMed  CAS  Google Scholar 

  19. Cardinal R, Janse MJ, van Eeden I, Werner G, d’Alnoncourt CN, Durrer D (1981) The effects of lidocaine on intracellular and extracellular potentials, activation, and ventricular arrhythmias during acute regional ischemia in the isolated porcine heart. Circ Res 49:792–806

    PubMed  CAS  Google Scholar 

  20. Clark MA, Littlejohn D, Conway TM, Mong S, Steiner S, Crooke ST (1986) Leukotriene D4 treatment of bovine aortic endothelial cells and murine smooth muscle cells in culture results in an increase in phospholipase A2 activity. J Biol Chem 261:10 713–10 718

    Google Scholar 

  21. Clarkson CW, Ten Eick RE (1983) On the mechanism of lysophosphatidylcholine-induced depolarization of cat ventricular myocardium. Circ Res 52:543–556

    PubMed  CAS  Google Scholar 

  22. Clusin WT, Bristow MR, Baim DS, Schroeder JS, Jaillon P, Brett P, Harrison DC (1982) The effects of diltiazem and reduced serum ionized calcium on ischemic ventricular fibrillation in the dog. Circ Res 50:518–526

    PubMed  CAS  Google Scholar 

  23. Cobb LA, Werner JA, Trobaugh GB (1980) Sudden cardiac death. I. A decade’s experience with out-of-hospital resuscitation. Mod Concepts Cardiovasc Dis 49:31–36

    PubMed  CAS  Google Scholar 

  24. Colquhoun D, Neher E, Reuter H, Stevens CF (1981) Inward current channels activated by intracellular Ca in cultured cardiac cells. Nature 294:752–754

    PubMed  CAS  Google Scholar 

  25. Coronel R, Fiolet JWT, Wilms-Schopman FJG, Schaapherder AFM, Johnson TA, Gettes LS, Janse MJ (1988) Distribution of extracellular potassium and its relation to electrophysiologic changes during acute myocardial ischemia in the isolated perfused porcine heart. Circulation 77:1125–1138

    PubMed  CAS  Google Scholar 

  26. Corr PB, Cain ME, Witkowski FX, Price DA, Sobel BE (1979) Potential arrhythmogenic electrophysiological derangements in canine Purkinje fibers induced by lysophosphoglycerides. Circ Res 44:822–832

    PubMed  CAS  Google Scholar 

  27. Corr PB, Creer MH, Yamada KA, Saffitz JE, Sobel BE (1989) Prophylaxis of early ventricular fibrillation by inhibition of acylcarnitine accumulation. J Clin Invest 83:927–936

    PubMed  CAS  Google Scholar 

  28. Corr PB, Dobmeyer DJ (1988) Amphipathic lipid metabolites and arrhythmogenesis: A perspective. In: Rosen M, Palti Y (eds) Lethal Arrhythmias Resulting from Myocardial Ischemia and Infarction. Kluwer Academic Publisher, pp. 91–104

    Google Scholar 

  29. Corr PB, Gross RW, Sobel BE (1984) Amphipathic metabolites and membrane dysfunction in ischemic myocardium. Circ Res 55:135–154

    PubMed  CAS  Google Scholar 

  30. Corr PB, Pearle DL, Hinton JR, Roberts WC, Gillis RA (1976) Site of myocardial infarction. A determinant of the cardiovascular changes induced in the cat by coronary occlusion. Circ Res 39:840–847

    PubMed  CAS  Google Scholar 

  31. Corr PB, Shayman JA, Kramer JB, Kipnis RJ (1981) Increased α-adrenergic receptors in ischemic cat myocardium. J Clin Invest 67:1232–1236

    PubMed  CAS  Google Scholar 

  32. Corr PB, Snyder DW, Cain ME, Crafford WA Jr, Gross RW, Sobel BE (1981) Electrophysiological effects of amphiphiles on canine Purkinje fibers. Circ Res 49:354–363

    PubMed  CAS  Google Scholar 

  33. Corr PB, Snyder DW, Lee BI, Gross RW, Keim CR, Sobel BE (1982) Pathophysiological concentrations of lysophosphatides and the slow response. Am J Physiol 243 (Heart and Circ 12):H187-H195

    PubMed  CAS  Google Scholar 

  34. Corr PB, Witkowski FX (1983) Potential electrophysiologic mechanisms responsible for dysrhythmias associated with reperfusion of ischemic myocardium. Circulation 68 suppl I:I-16-I-24

    Google Scholar 

  35. Corr PB, Yamada KA, Creer MH, Sharma AD, Sobel BE (1987) Lysophosphoglycerides and ventricular fibrillation early after onset of ischemia. J Mol Cell Cardiol 19:34–53

    Google Scholar 

  36. Corr PB, Yamada KA, Witkowski FX (1986) Mechanisms controlling cardiac autonomic function and their relation to arrhythmogenesis. In: Fozzard HA et al. (eds). The Heart and Cardiovascular System. Scientific Foundations. Raven Press, New York, pp 1343–1403

    Google Scholar 

  37. Cranefield PF (1977) Action potentials, afterpotentials, and arrhythmias. Circ Res 41:415–423

    PubMed  CAS  Google Scholar 

  38. Creer MH, Dobmeyer DJ, Corr PB (1989) Amphipathic lipid metabolites and arrhythmias during myocardial ischemia. In: Zipes DP, Jalife J (eds) Cardiac Electrophysiology and Arrhythmias. Grune and Stratton (in press)</Refs>

    Google Scholar 

  39. Culling W, Penny WJ, Cunliffe G, Flores NA, Sheridan DJ (1987) Arrhythmogenic and electrophysiological effects of alpha adrenoceptor stimulation during myocardial ischaemia and reperfusion. J Mol Cell Cardiol 19:251–258

    PubMed  CAS  Google Scholar 

  40. Davey MJ (1980) Relevant features of the pharmacology of prazosin. J Cardiovasc Pharmacol 2:S287-S301

    Google Scholar 

  41. Davies MJ, Thomas A (1984) Thrombosis and acute coronary artery lesions in sudden cardiac ischemic death. N Engl J Med 310:1137–1141

    PubMed  CAS  Google Scholar 

  42. DeMello WC (1980) Influence of intracellular injection of H<sup>+</sup> on the electrical coupling in cardiac Purkinje fibres. Cell Biol Int Rep 4: 51–58

    CAS  Google Scholar 

  43. DeMello WC (1975) Effects of intracellular injection of calcium and strontium on cell communication in the heart. J Physiol 250:231–245

    CAS  Google Scholar 

  44. Dillon JS, Gu ZH, Nayler WG (1988) Alpha<sub>1</sub>-adrenoceptors in the ischemic and reperfused myocardium. J Mol Cell Cardiol 20:725–735

    PubMed  CAS  Google Scholar 

  45. Dominguez G, Fozzard H (1970) Influence of extracellular K<sup>+</sup> concentration on cable properties and excitability of sheep cardiac Purkinje fibers. Circ Res 26:565–574

    PubMed  CAS  Google Scholar 

  46. Donaldson RM, Taggart P, Nashat F, Abed J, Richards AF, Noble D (1983) Study of the electrophysiological effects of early or subendocardial ischaemia with intracavitary electrodes in the dog. Clin Sci 65:579–588

    PubMed  CAS  Google Scholar 

  47. Downar E, Janse MJ, Durrer D (1977) The effect of acute coronary occlusion on subepicardial transmembrane potentials in the intact porcine heart. Circulation 56:217–224

    PubMed  CAS  Google Scholar 

  48. El-Sherif N, Hope RR, Scherlag BJ, Lazzara R (1977) Re-entrant ventricular arrhythmias in the late myocardial infarction period: I. Conduction characteristics in the infarction zone. Circulation 55:686–701

    PubMed  CAS  Google Scholar 

  49. Fabiato A (1983) Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 245:C1-C14

    PubMed  CAS  Google Scholar 

  50. Fink KL, Gross RW (1984) Modulation of canine myocardial sarcolemmal membrane fluidity by amphiphilic compounds. Circ Res 55:585–594

    PubMed  CAS  Google Scholar 

  51. Fleet WF, Johnson TA, Graebner CA, Gettes LS (1985) Effect of serial brief ischemic episodes on extracellular K<sup>+</sup>, pH, and activation in the pig. Circulation 72:922–932

    PubMed  CAS  Google Scholar 

  52. Fondacaro JD, Han J, Yoon MS (1978) Effects of verapamil on ventricular rhythm during acute coronary occlusion. Am Heart J 96:81–86

    PubMed  CAS  Google Scholar 

  53. Franson RC, Pang DC, Weglicki WB (1979) Modulation of lipolytic activity in isolated canine cardiac sarcolemma by isoproterenol and propranolol. Biochem Biophys Res Commun 90:956–962

    PubMed  CAS  Google Scholar 

  54. Gilmour RF, Zipes DP (1980) Different electrophysiologic responses of canine endocardium and epicardium to combined hyperkalemia, hypoxia and acidosis. Circ Res 46:814–825

    PubMed  Google Scholar 

  55. Gross RW (1983) Purification of rabbit myocardial cytosolic acyl CoA hydrolase, identity with lysophospholipase and modulation of enzymatic activity by endogenous cardiac amphiphiles. Biochemistry 22:5641–5646

    PubMed  CAS  Google Scholar 

  56. Gross RW, Corr PB, Lee BE, Saffitz JE, Crafford WA Jr, Sobel BE (1982) Incorporation of radiolabeled lysophosphatidylcholine into canine Purkinje fibers and ventricular muscle: Electrophysiological, biochemical and autoradiographic correlations. Circ Res 51:27–36

    PubMed  CAS  Google Scholar 

  57. Gross RW, Drisdel RC, Sobel BE (1983) Rabbit myocardial lysophospholipase-transacylase: purification, characterization, and inhibition by endogenous cardiac amphiphiles. J Biol Chem 258:15165–15172

    PubMed  CAS  Google Scholar 

  58. Gross RW, Sobel BE (1982) Lysophosphatidylcholine metabolism in the rabbit heart. Characterization of metabolic pathways and partial purification of myocardial lysophospholipase-transacylase. J Biol Chem 257:6702–6708

    PubMed  CAS  Google Scholar 

  59. Harris AS (1950) Delayed development of ventricular ectopic rhythms following experimental coronary occlusion. Circulation 1:1318–1328

    PubMed  CAS  Google Scholar 

  60. Harris AS, Estandia A, Tillotson RF (1951) Ventricular ectopic rhythms and ventricular fibrillation following cardiac sympathectomy and coronary occlusion. Am J Physiol 65:505–512

    Google Scholar 

  61. Harris AS, Rojas GA (1943) Initiation of ventricular fibrillation due to coronary occlusion. Exp Med Surg 1:105–122

    Google Scholar 

  62. Hearse DJ (1979) Oxygen deprivation and early myocardial contractile failure: a reassessment of the possible role of adenosine triphosphate. Am J Cardiol 44:1115–1121

    PubMed  CAS  Google Scholar 

  63. Hearse DJ, Opie LH, Katzeff IE, Lubbe WF, van der Werff TJ, Peisach M, Boulle G (1977) Characterization of the “border zone” in acute regional ischemia in the dog. Am J Cardiol 40:716–726

    PubMed  CAS  Google Scholar 

  64. Hearse DJ, Yellon DM (1981) The “border zone” in evolving myocardial infarction: controversy or confusion. Am J Cardiol 47:1321–1334

    PubMed  CAS  Google Scholar 

  65. Heathers GP, Evers AS, Corr PB (1989) Enhanced inositol trisphosphate response to a<sub>1</sub>adrenergic stimulation in hypoxic cardiac myocytes. J Clin Invest 83:1409–1413

    PubMed  CAS  Google Scholar 

  66. Heathers GP, Juehne T, Rubin LJ, Corr PB, Evers AS (1989) Anion exchange chromatographic separation of inositol phosphates and their quantification by gas chromatography. Anal Biochem 176:109–116

    PubMed  CAS  Google Scholar 

  67. Heathers GP, Lee PC, Yamada KA, Corr PB (1990) The influence of hypoxia on betaadrenergic receptors and their intracellular coupling in isolated adult canine myocytes. submitted

    Google Scholar 

  68. Heathers GP, Yamada KA, Kanter EM, Corr PB (1987) Long-chain acylcarnitines mediate the hypoxia-induced increase in a<sub>1</sub>-adrenergic receptors on adult canine myocytes. Circ Res 61:735–746

    PubMed  CAS  Google Scholar 

  69. Hill JL, Gettes LS (1980) Effect of acute coronary occlusion on local myocardial extracellular K<sup>+</sup> activity in swine. Circulation 61:768–778

    PubMed  CAS  Google Scholar 

  70. Hirche HJ, Franz C, Box L, Bissig R, Lang R, Schramm M (1980) Myocardial extracellular K+ and H increase and noradrenaline release as possible cause of early arrhythmias following acute coronary artery occlusion in pigs. J Mol Cell Cardiol 12:579–593

    PubMed  CAS  Google Scholar 

  71. Ho AK, Klein DC (1987) Activation of a<sub>1</sub>-adrenoceptors, protein kinase C or treatment with intracellular free Ca<sup>++</sup> elevating agents increases pineal phospholipase A2 activity. J Biol Chem 262:11764–11770

    PubMed  CAS  Google Scholar 

  72. Hoffman BF, Cranefield PF (1960) Electrophysiology of the Heart. New York, McGraw-Hill Book Co.

    Google Scholar 

  73. Holland RP, Brooks H (1976) The QRS complex during myocardial ischemia. J Clin Invest 57:541–550

    PubMed  CAS  Google Scholar 

  74. Ikeda K, Hiraoka M (1982) Effects of hypoxia on passive electrical properties of canine ventricular muscle. Pflügers Arch 393:45–50

    PubMed  CAS  Google Scholar 

  75. Ingebretsen CG (1980) Interaction between alpha- and beta-adrenergic receptors and cholinergic receptors in isolated perfused rat heart: effects on cAMP-protein kinase and phosphorylase. J Cyclic Nuc Res 6:121–132

    CAS  Google Scholar 

  76. Inoue D, Pappano AJ (1983) L-Palmitylcarnitine and calcium ions act similarly on excitatory ionic currents in avian ventricular muscle. Circ Res 52:625–634

    PubMed  CAS  Google Scholar 

  77. Irvine RF, Brown KD, Berridge MJ (1984) Specificity of inositol trisphosphate-induced calcium release from permeabilized Swiss-mouse 3T3 cell. Biochem J 222:269–272

    PubMed  CAS  Google Scholar 

  78. Janse MJ, Cinca J, Morena H, Fiolet JWT, Kleber AG, de Vries GP, Becker AE, Durrer D (1979) The “border zone” in myocardial ischemia: an electrophysiological, metabolic, and histochemical correlation in the pig heart. Circ Res 44:576–588

    PubMed  CAS  Google Scholar 

  79. Janse MJ, Kleber AG (1981) Electrophysiological changes and ventricular arrhythmias in the early phase of regional myocardial ischemia. Circ Res 49:1069–1081

    PubMed  CAS  Google Scholar 

  80. Janse MJ, van Capelle FJL (1982) Electrotonic interactions across an inexcitable region as a cause of ectopic activity in acute regional myocardial ischemia: A study in intact porcine and canine hearts and computer models. Circ Res 50:527–537

    PubMed  CAS  Google Scholar 

  81. Janse MJ, van Capelle FJL, Morsink H, Kleber AG, Wilms-Schopman F, Cardinal R, Naumann D’Alnoncourt C, Durrer D (1980) Flow of “injury” current and patterns of excitation during early ventricular arrhythmias in acute regional myocardial ischemia in isolated porcine and canine hearts. Evidence for two different arrhythmogenic mechanisms. Circ Res 47:151–165

    PubMed  CAS  Google Scholar 

  82. January CT, Fozzard HA (1988) Delayed afterdepolarization in heart muscle: Mechanisms and relevance. Pharmacol Res 40:219–227

    CAS  Google Scholar 

  83. Jennings RB, Sommers HM, Smyth GA, Flack HA, Linn H (1960) Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol 70:68–78

    PubMed  CAS  Google Scholar 

  84. Jones CE, Thomas JX, Parker JC, Parker RE (1976) Acute changes in high energy phosphates, nucleotide derivatives, and contractile force in ischaemic and nonischaemic canine myocardium following coronary occlusion. Cardiovasc Res 10:275–282

    PubMed  CAS  Google Scholar 

  85. Jorgensen L, Rowsell HC, Hovig T, Glynn MF, Mustard JF (1967) Adenosine diphosphateinduced platelet aggregation and myocardial infarction in swine. Lab Invest 17:616–644

    PubMed  CAS  Google Scholar 

  86. Kane KA, Parratt JR, Williams FM (1984) An investigation into the characteristics of reperfusion-induced arrhythmias in the anaesthetized rat and their susceptibility to antiarrhythmic agents. Br J Pharmacol 82:349–357

    PubMed  CAS  Google Scholar 

  87. Kannel WB, Doyle JT, McNamara PM, Quickenton P, Gordon T (1975) Precursors of sudden coronary death: Factors related to the incidence of sudden death. Circulation 51:606–613

    PubMed  CAS  Google Scholar 

  88. Kantor PF, Coetzee WA, Dennis SC, Opie LH (1987) Effects of glibenclamide on ischemic arrhythmias (abstract). Circulation 76 (Suppl IV): IV-17

    Google Scholar 

  89. Kaplinsky E, Ogawa S, Balke W, Dreifus LS (1979) Role of endocardial activation in malignant ventricular arrhythmias associated with acute ischemia. J Electrocardiol 12:299–306

    PubMed  CAS  Google Scholar 

  90. Kass RS, Lederer WJ, Tsien RW, Weingart R (1978) Role of calcium ions in transient inward currents and aftercontractions induced by strophanthidin in cardiac Purkinje fibres. J Physiol 281:187–208

    PubMed  CAS  Google Scholar 

  91. Katzung BG, Hondeghem LM, Grant AO (1975) Cardiac ventricular automaticity induced by a current of injury. Pflügers Arch 360:193–197

    PubMed  CAS  Google Scholar 

  92. Kaumann AJ, Serur JR (1975) Optical isomers of verapamil on canine heart: prevention of ventricular fibrillation induced by coronary artery occlusion, impaired atrioventricular conductance and negative inotropic and chronotropic effects. Naunyn-Schmiedeberg’s Arch Pharmacol 291:347–358

    CAS  Google Scholar 

  93. Khan MI, Hamilton JT, Manning GW (1973) Early arrhythmias following experimental coronary occlusion in conscious dogs and their modification by ß-adrenoceptor blocking drugs. Am Heart J 86:347–358

    PubMed  CAS  Google Scholar 

  94. Kimura S, Bassett AL, Kohya T, Kozlovskis PL, Myerburg RJ (1986) Simultaneous recording of action potentials from endocardium and epicardium during ischemia in the isolated cat ventricle: relation of temporal electrophysiologic heterogeneities to arrhythmias. Circulation 74:401–409

    PubMed  CAS  Google Scholar 

  95. Kimura S, Bassett AL, Saoudi NC, Cameron JS, Kozlovskis PL, Myerburg RJ (1986) Cellular electrophysiologic changes and “arrhythmias” during experimental ischemia and reperfusion in isolated cat ventricular myocardium. J Am Coll Cardiol 7:833–842

    PubMed  CAS  Google Scholar 

  96. Kleber AG (1983) Resting membrane potential, extracellular potassium activity, and intracellular sodium activity during acute global ischemia in isolated perfused guinea pig hearts. Circ Res 52:442–450

    PubMed  CAS  Google Scholar 

  97. Kleber AG, Janse MJ, van Capelle FJL, Durrer D (1978) Mechanism and time course of S-T and T-Q segment changes during acute regional myocardial ischemia in the pig heart determined by extracellular and intracellular recordings. Circ Res 42:603–613

    PubMed  CAS  Google Scholar 

  98. Kleber AG, Janse MJ, Wilms-Schopman FJG, Wilde AAM, Coronel R (1986) Changes in conduction velocity during acute ischemia in ventricular myocardium of the isolated porcine heart. Circulation 73:189–198

    PubMed  CAS  Google Scholar 

  99. Kleber AG, Riegger CB (1987) Electrical constants of arterially perfused rabbit papillary muscle. J Physiol 385:307–324

    PubMed  CAS  Google Scholar 

  100. Kleber AG, Riegger CB, Janse MJ (1987) Electrical uncoupling and increase of extracellular resistance after induction of ischemia in isolated, arterially perfused rabbit papillary muscle. Circ Res 61:271–279

    PubMed  CAS  Google Scholar 

  101. Kleber AG, Riegger CB, Janse MJ (1987) Extracellular K<sup>+</sup> and H<sup>+</sup> shifts in early ischemia: Mechanisms and relation to changes in impulse propagation. J Mol Cell Cardiol 19 (Suppl V):35–44

    PubMed  CAS  Google Scholar 

  102. Knabb MT, Saffitz JE, Corr PB, Sobel BE (1986) The dependence of electrophysiological derangements on accumulation of endogenous long-chain acyl carnitine in hypoxic neonatal rat myocytes. Circ Res 58:230–240

    PubMed  CAS  Google Scholar 

  103. Kramer JB, Saffitz JE, Witkowski FX, Corr PB (1985) Intramural reentry as a mechanism of ventricular tachycardia during evolving canine myocardial infarction. Circ Res 56:736–754

    PubMed  CAS  Google Scholar 

  104. Krause S, Heses HL (1984) Characterization of cardiac sarcoplasmic reticulum dysfunction during short-term, normothermic, global ischemia. Circ Res 55:176–184

    PubMed  CAS  Google Scholar 

  105. Lathers CM, Kelliher GJ, Robert J, Beasley AB (1978) Nonuniform cardiac sympathetic nerve discharge. Circulation 57:1058–1065

    PubMed  CAS  Google Scholar 

  106. Lazzara R, El-Sherif N, Hope RR, Scherlag BJ (1978) Ventricular arrhythmias and electrophysiological consequences of myocardial ischemia and infarction. Circ Res 42:740–749

    PubMed  CAS  Google Scholar 

  107. Lee H-C, Smith N, Mohabir R, Clusin WT (1987) Cytosolic calcium transients from the beating mammalian heart. Proc Natl Acad Sci USA 84:7793–7797

    PubMed  CAS  Google Scholar 

  108. Levites R, Banka VS, Helfant RH (1975) Electrophysiologic effects of coronary occlusion and reperfusion. Observations of dispersion of refractoriness and ventricular automaticity. Circulation 52:760–765

    PubMed  CAS  Google Scholar 

  109. Levitzki A (1986) ß-Adrenergic receptors and their mode of coupling to adenylate cyclase. Physiol Rev 66:819–854

    PubMed  CAS  Google Scholar 

  110. Liedtke AJ, Nellis S, Neely JR (1978) Effects of excess free fatty acids on mechanical and metabolic function in normal and ischemic myocardium in swine. Circ Res 43:652–661

    PubMed  CAS  Google Scholar 

  111. Lown B (1979) Sudden cardiac death: The major challenge confronting contemporary cardiology. Am J Cardiol 43:313–328

    PubMed  CAS  Google Scholar 

  112. Maisel AS, Motulsky HJ, Insel PA (1985) Externalization of ß-adrenergic receptors promoted by myocardial ischemia. Science 230:183–186

    PubMed  CAS  Google Scholar 

  113. Maisel AS, Motulsky HJ, Ziegler MG, Insel PA (1987) Ischemia- and agonist-induced changes in alpha<sub>1</sub>- and beta-adrenergic receptor traffic in the guinea pig heart. Am J Physiol 253:H1159–1166

    PubMed  CAS  Google Scholar 

  114. Malliani A, Lombardi F (1978) Neural reflexes associated with myocardial ischemia. In: Schwartz P.J, Brown AM, Malliani A, Zanchetti A (eds), Neural Mechanisms in Cardiac Arrhythmias. Raven Press, New York, pp 209–219

    Google Scholar 

  115. Man RYK (1988) Lysophosphatidylcholine-induced arrhythmias and its accumulation in the rat perfused heart. Br J Pharmacol 93:412–416

    PubMed  CAS  Google Scholar 

  116. Man RYK, Slater TL, Pelletier MPJ, Choy PC (1983) Alterations of phospholipids in ischemic canine myocardium during acute arrhythmia. Lipids 18:677–681

    PubMed  CAS  Google Scholar 

  117. Marban E, Kitakaze M, Kusuoka H, Porterfield JK, Yue DT, Chacko VP (1987) Intracellular free calcium concentration measured with <sup>19</sup>F NMR spectroscopy in intact ferret hearts. Proc Natl Acad Sci USA 84:6005–6009

    PubMed  CAS  Google Scholar 

  118. Marcus ML, Kerber RE, Ehrhardt J, Abboud FM (1976) Effects of time on volume and distribution of coronary collateral flow. Am J Physiol 230:279–285

    PubMed  CAS  Google Scholar 

  119. Marrannes R, de Hemtinne A, Leusen I (1979) Influence of lactate and other organic ions on conduction velocity in mammalian heart fibers depressed by “metabolic” acidosis. J Mol Cell Cardiol 11:359–374

    PubMed  CAS  Google Scholar 

  120. May GS, Eberlein KA, Furberg CD, Passamani ER, DeMets DL (1982) Secondary prevention after myocardial infarction: A review of long-term trials. Prog Cardiovasc Dis 24:331–352

    PubMed  CAS  Google Scholar 

  121. McDonald TF, MacLeod DP (1973) Metabolism and the electrical activity of anoxic ventricular muscle. J Physiol 229:559–582

    PubMed  CAS  Google Scholar 

  122. Miura Y, Inui J, Imamura H (1978) Alpha-adrenoceptor-mediated restoration of calcium dependent potentials in the partially depolarized rabbit papillary muscle. Naunyn Schmiedebergs Arch Pharmacol 301:201–205

    PubMed  CAS  Google Scholar 

  123. Mugelli A, Cerbia E, Amerini S, Giotti A (1985) Altered responsiveness of cardiac alphaand beta-adrenoceptors during hypoxia and aging: relevance for arrhythmias. New Trends in Arrhythmias 1:115–123

    Google Scholar 

  124. Mukherjee A, Bush LR, McCoy KE, Duke RJ, Hagler H, Buja LM, Willerson JT (1982) Relationship between ß-adrenergic receptor numbers and physiological responses during experimental canine myocardial ischemia. Circ Res 50:735–741

    PubMed  CAS  Google Scholar 

  125. Mukherjee A, Wong TM, Buja LM, Lefkowitz RJ, Willerson JT (1987) Beta-adrenergic and muscarinic cholinergic receptors in canine myocardium. J Clin Invest 64:1423–1428

    Google Scholar 

  126. Nattel S, Elharrar V, Zipes DP, Bailey JC (1981) pH-dependent electrophysiological effects of quinidine and lidocaine on canine cardiac Purkinje fibers. Circ Res 48:55–61

    PubMed  CAS  Google Scholar 

  127. Nikolic G, Bishop RL, Singh JB (1982) Sudden death recorded during Holter monitoring. Circulation 66:218–225

    PubMed  CAS  Google Scholar 

  128. Noma A (1983) ATP-regulated K<sup>+</sup> channels in cardiac muscle. Nature 305:147–148

    PubMed  CAS  Google Scholar 

  129. Oliva PB, Breckinridge JC (1977) Arteriographic evidence of coronary arterial spasm in acute myocardial infarction. Circulation 56:366–374

    PubMed  CAS  Google Scholar 

  130. Panidis IP, Morganroth J (1983) Sudden death in hospitalized patients: cardiac rhythm disturbances detected by ambulatory electrocardiographic monitoring. J Am Coll Cardiol 2:798–805

    PubMed  CAS  Google Scholar 

  131. Penkoske PA, Sobel BE, Corr PB (1978) Disparate electrophysiological alterations accompanying dysrhythmias due to coronary occlusion and reperfusion in the cat. Circulation 58:1023–1035

    PubMed  CAS  Google Scholar 

  132. Pentecost BL, Austen WG (1966) Bet ap adrenergic blockade in experimental myocardial infarction. Am Heart J 72:790–796

    PubMed  CAS  Google Scholar 

  133. Pogwizd SM, Corr PB (1987) Reentrant and nonreentrant mechanisms contribute to arrhythmogenesis during early myocardial ischemia: Results using three-dimensional mapping. Circ Res 61:352–371

    PubMed  CAS  Google Scholar 

  134. Pogwizd SM, Corr PB (1990) Mechanisms underlying the development of ventricular fibrillation during early myocardial ischemia. Circ Res 66:672–695

    PubMed  CAS  Google Scholar 

  135. Pogwizd SM, Corr PB (1987) Electrophysiologic mechanisms underlying arrhythmias due to reperfusion of ischemic myocardium. Circulation 76:404–426

    PubMed  CAS  Google Scholar 

  136. Pogwizd SM, Onufer JR, Kramer JB, Sobel BE, Corr PB (1986) Induction of delayed afterdepolarizations and triggered activity in canine Purkinje fibers by lysophosphoglycerides. Circ Res 59:416–426

    PubMed  CAS  Google Scholar 

  137. Preda I, Karpati P, Endsoczi E (1975) Myocardial noradrenaline uptake after coronary occlusion in the rat. Acta Physiol Hung 46:99–106

    CAS  Google Scholar 

  138. Prinzmetal M, Toyoshima H, Ekmekci A, Mizuno Y, Nagaya T (1961) Myocardial ischemia. Nature of ischemic electrocardiographic patterns in the mammalian ventricles as determined by intracellular electrographic and metabolic changes. Am J Cardiol 8:493–503

    PubMed  CAS  Google Scholar 

  139. Rapundalo ST, Briggs FN, Feher JJ (1986) Effects of ischemia on the isolation and function of canine cardiac sarcoplasmic reticulum. J Mol Cell Cardiol 18:837–851

    PubMed  CAS  Google Scholar 

  140. Reimer KA, Hill ML, Jennings RB (1981) Prolonged depletion of ATP and of the adenine nucleotide pool due to delayed resynthesis of adenine nucleotides following reversible myocardial ischemic injury in dogs. J Mol Cell Cardiol 13:229–239

    PubMed  CAS  Google Scholar 

  141. Reimer KA, Jennings RB (1979) The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest 40:633–644

    PubMed  CAS  Google Scholar 

  142. Riemersma A (1982) Myocardial catecholamine release in acute myocardial ischaemia: Relationship to cardiac arrhythmias. In: Parratt JR (ed) Early Arrhythmias Resulting from Myocardial Ischemia. Mechanisms and Prevention by Drugs. Macmillan, London, pp 125–138

    Google Scholar 

  143. Rosen MR, Hordof AJ, Ilvento JP, Danilo P Jr (1977) Effects of adrenergic amines on electrophysiologic properties and automaticity of neonatal and adult canine Purkinje fibers. Evidence for α- and 13-adrenergic actions. Circ Res 40:390–400

    PubMed  CAS  Google Scholar 

  144. Rosen MR, Reder RF (1981) Does triggered activity have a role in the genesis of cardiac arrhythmias? Ann Int Med 94:794–801

    PubMed  CAS  Google Scholar 

  145. Ruffy R, Lovelace DE, Mueller TM, Knoebel SB, Zipes DP (1979) Relationship between changes in left ventricular bipolar electrograms and regional myocardial blood flow during acute coronary occlusion in the dog. Circ Res 45:764–770

    PubMed  CAS  Google Scholar 

  146. Russell IC, Oliver MF (1978) Ventricular refractoriness during acute myocardial ischaemia and its relationship to ventricular fibrillation. Cardiovasc Res 12:221–227

    PubMed  CAS  Google Scholar 

  147. Saffitz JE, Corr PB, Lee BI, Gross RW, Williamson EK, Sobel BE (1984) Pathophysiological concentrations of lysophosphoglycerides quantified by electron microscopic autoradiography. Lab Invest 50:278–286

    PubMed  CAS  Google Scholar 

  148. Samson WE, Scher AM (1960) Mechanism of S-T segment alteration during acute myocardial iniurv. Circ Res 8:780–787

    PubMed  CAS  Google Scholar 

  149. Sayen JJ, Pierce G, Katcher AH, Sheldon WF (1961) Correlation of intramyocardial electrocardiograms with polarographic oxygen and contractility in the non-ischemic and regionally ischemic left ventricle. Circ Res 9:1268–1279

    PubMed  CAS  Google Scholar 

  150. Scherlag BJ, El-Sherif N, Hope R, Lazzara R (1974) Characterization and localization of ventricular arrhythmias resulting from myocardial ischemia and infarction. Circ Res 35:372–383

    PubMed  CAS  Google Scholar 

  151. Scherlag BJ, Helfant RH, Haft JI, Damato AN (1970) Electrophysiology underlying ventricular arrhythmias due to coronary ligation. Am J Physiol 219:1665–1671

    PubMed  CAS  Google Scholar 

  152. Scholz H (1980) Effects of beta- and alpha-adrenoceptor activators and adrenergic transmitter releasing agents on the mechanical activity of the heart. In: Szekeres L (ed) Handbook of Experimental Pharmacology, vol 54, Springer, Berlin Heidelberg New York, pp 651–733

    Google Scholar 

  153. Schümarn HJ, Wagner J, Knorr A, Reidemeiser JC, Sadony V, Schramm G (1978) Demonstration in human atrial preparations of a-adrenoreceptors mediating positive inotropic effects. Naunyn-Schmiedebergs Arch Pharmacol 302:333–336

    Google Scholar 

  154. Schwartz PJ, Stone HL, Brown AM (1976) Effects of unilateral stellate ganglion blockade on the arrhythmias associated with coronary occlusion. Am Heart J 92:589–599

    PubMed  CAS  Google Scholar 

  155. Schwartz PJ, Vanoli E, Zaza A, Zuanetti G (1985) The effect of antiarrhythmic drugs on lifethreatening arrhythmias induced by the interaction between acute myocardial ischemia and sympathetic hyperactivity. Am Heart J 109:937–948

    PubMed  CAS  Google Scholar 

  156. Sedlis SP, Corr PB, Sobel BE, Ahumada GG (1983) Lysophosphatidylcholine potentiates Ca<sup>2+</sup> accumulation in rat cardiac myocytes. Am J Physiol 244:H32-H38

    PubMed  CAS  Google Scholar 

  157. Shaikh NA, Downar E (1981) Time course of changes in porcine myocardial phospholipid levels during ischemia: a reassessment of the lvsolipid hypothesis. Circ Res 49:316–325

    PubMed  CAS  Google Scholar 

  158. Sheridan DJ, Penkoske PA, Sobel BE, Corr PB (1980) Alpha-adrenergic contributions to dysrhythmias during myocardial ischemia and reperfusion in cats. J Clin Invest 65:161–171

    PubMed  CAS  Google Scholar 

  159. Snyder DW, Crafford WA Jr, Glashow JL, Rankin D, Sobel BE, Corr PB (1981) Lysophosphoglycerides in ischemic myocardium effluents and potentiation of their arrhythmogenic effects. Am J Physiol 241:H700-H707

    PubMed  CAS  Google Scholar 

  160. Spedding M (1985) Activators and inactivators of Ca<sup>++</sup> channels: New perspectives. J Pharmacol (Paris) 16:319–343

    CAS  Google Scholar 

  161. Spedding M, Mir AK (1987) Direct activation of Ca<sup>++</sup> channels by palmitoyl carnitine, a putative endogenous ligand. Br J Pharmacol 92:457–468

    PubMed  CAS  Google Scholar 

  162. Stewart JR, Burmeister WE, Burmeister J, Lucchesi BR (1980) Electrophysiologic and antiarrhythmic effects of phentolamine in experimental coronary artery occlusion and reperfusion in the dog. J Cardiovasc Pharmacol 2:77–91

    PubMed  CAS  Google Scholar 

  163. Ten Eick RE, Singer DH, Solberg LE (1976) Coronary occlusion. Effect on cellular electrical activity of the heart. Med Clinics NA 60:49–67

    CAS  Google Scholar 

  164. Thandroyen FT, McCarthy J, Burton KP, Opie LH (1988) Ryanodine and caffeine prevent ventricular arrhythmias during acute myocardial ischemia and reperfusion in rat heart. Circ Res 62:306–314

    PubMed  CAS  Google Scholar 

  165. Thandroyen FT, Worthington MG, Higginson LM, Opie LH (1983) The effect of alpha- and beta-adrenoceptor antagonist agents on reperfusion ventricular fibrillation and metabolic status in the isolated perfused rat heart. J Am Coll Cardiol 14:1056–1066

    Google Scholar 

  166. Vary TC, Angelakos ET, Schaffer SW (1979) Relationship between adenine nucleotide metabolism and irreversible ischemic tissue damage in isolated perfused rat heart. Circ Res 45:218–225

    PubMed  CAS  Google Scholar 

  167. Vassalle M (1985) Overdrive excitation: The onset of spontaneous activity following a fast drive. In: Zipes DP, Jalife J (eds) Cardiac Electrophysiology and Arrhythmias. Grune and Stratton, New York, pp 97–107

    Google Scholar 

  168. Vleugels A, Vereecke J, Carmeliet E (1980) Ionic currents during hypoxia in voltageclamped cat ventricular muscle. Circ Res 47:501–508

    PubMed  CAS  Google Scholar 

  169. van Bilsen M, van der Vusse GJ, Willemsen PHM, Coumans WA, Roemen THM, Reneman RS (1989) Lipid alterations in isolated, working rat hearts during ischemia and reperfusion: its relation to myocardial damage. Circ Res 64:304–314

    PubMed  Google Scholar 

  170. Waldo AL, Kaiser GA (1973) Study of ventricular arrhythmias associated with acute myocardial infarction in the canine heart. Circulation 47:1222–1228

    PubMed  CAS  Google Scholar 

  171. Weiss J, Shine KI (1982) Extracellular K<sup>+</sup> accumulation during myocardial ischemia in isolated rabbit heart. Am J Physiol 242:H619-H628

    PubMed  CAS  Google Scholar 

  172. Weiss JN, Lamp ST (1987) Glycolysis preferentially inhibits AIP-sensitive K + channels in isolated guinea pig cardiac myocytes. Science 238:67–69

    PubMed  CAS  Google Scholar 

  173. Wiegand V, Güggi M, Meesmann W, Kessler M, Greitschuss F (1979) Extracellular potassium activity changes in the canine myocardium after acute coronary occlusion and the influence of beta-blockade. Cardiovasc Res 13:297–302

    PubMed  CAS  Google Scholar 

  174. Wilber DJ, Lynch JL, Montgomery DG, Lucchesi BR (1987) Alpha-adrenergic influences in canine ischemic sudden death. Effects of alpha<sub>1</sub>-adrenoceptor blockade with prazosin. J Cardiovasc Pharmacol 10:96–106

    PubMed  CAS  Google Scholar 

  175. Wilensky RL, Tranum-Jensen J, Coronel R, Wilde AAM, Fiolet JWT, Janse MJ (1986) The subendocardial border zone during acute ischemia of the rabbit heart: an electrophysiologic, metabolic, and morphologic correlative study. Circulation 74:1137–1146

    PubMed  CAS  Google Scholar 

  176. Williams DO, Scherlag BJ, Hope RR, El-Sherif N, Lazzara R (1974) The pathophysiology of malignant ventricular arrhythmias during acute myocardial ischemia. Circulation 50:1163–1172

    PubMed  CAS  Google Scholar 

  177. Williams LT, Guerrero JL, Leinbach RC (1982) Prevention of reperfusion dysrhythmia by selective coronary alpha-adrenergic blockade. Am J Cardiol 49:1046 (abstract)

    Google Scholar 

  178. Wit AL (1982) Electrophysiological mechanisms of ventricular tachycardia caused by myocardial ischemia and infarction in experimental animals. In: Josephson ME (ed) Ventricular Tachycardia. Mount Kisco, New York: Futura, pp 33–96

    Google Scholar 

  179. Wit AL, Rosen MR (1986) Afterdepolarization and triggered activity. In: Fozzard HA et al. (eds) The Heart and Cardiovascular System. Scientific Foundations. Raven Press, New York, pp 1449–1490

    Google Scholar 

  180. Witkowski FX, Corr PB (1984) An automated simultaneous transmural cardiac mapping system. Am J Physiol 247:H661-H668

    PubMed  CAS  Google Scholar 

  181. Wojtczak J (1979) Contractures and increase in internal longitudinal resistance of cow ventricular muscle induced by hypoxia. Circ Res 44:88–95

    PubMed  CAS  Google Scholar 

  182. Woodcock EA, Whilt LBS, Smith Al, McLeod J K (1981) Stimulation of pnospnatiayl1nos1tol metabolism in the isolated perfused rat heart. Circ Res 61:625–631

    Google Scholar 

  183. Zipes DP (1977) Electrolyte derangements in the genesis of arrhythmias. In: Dreifus LS, Likoff W (eds) Cardiac Arrhythmias. Grune and Stratton, New York, p 55

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pogwizd, S.M., Corr, P.B. (1990). Electrophysiologic and Biochemical Mechanisms Underlying Malignant Ventricular Arrhythmias during Early Myocardial Ischemia. In: Heusch, G. (eds) Pathophysiology and Rational Pharmacotherapy of Myocardial Ischemia. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-54133-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54133-9_7

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-54135-3

  • Online ISBN: 978-3-642-54133-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics