Liver Segmentation Based on Reaction-Diffusion Evolution and Chan-Vese Model in 4DCT

  • Walita Narkbuakaew
  • Hiroshi Nagahashi
  • Kota Aoki
  • Yoshiki Kubota
Part of the Communications in Computer and Information Science book series (CCIS, volume 404)


Localization is an important step in the radiation treatment planning. The use of 4DCT data can enhance the efficiency of the planning when a target region is deformed by respiratory motion. Conversely, image quality in soft tissue is low since it utilizes low energy to collect data in order to limit the accumulated dose in a patient. This paper presents a method of liver segmentation in 4DCT data including high image noise and metal artifact. The proposed method was based on a level-set method using reaction-diffusion evolution and modification of a Chan-Vese model. Automatic segmentation was independently performed on each CT volume in a breathing cycle. From our results, the global shape of the liver was extracted smoothly without detecting extraordinary regions. The displacement computed from the center of mass of the liver-segmented volume was similar to a movement trend of two metal markers placed inside the liver.


liver segmentation level-set 4D-CT 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Matoba, M., Oota, K., Toyoda, I., Kitadate, M., Watanabe, N., Tonami, H.: Usefulness of 4d-ct for radiation treatment planning of gastric mzbcl/malt. Journal of Radiation Research 53(2), 333–337 (2012)CrossRefGoogle Scholar
  2. 2.
    Campadelli, P., Casiraghi, E., Esposito, A.: Liver segmentation from computed tomography scans: a survey and a new algorithm. Artificial Intelligence in Medicine 45, 185–196 (2009)CrossRefGoogle Scholar
  3. 3.
    Heimann, T., van Ginneken, B., Styner, M.A., et al.: Comparison and evaluation of method for liver segmentation from ct datasets. IEEE Transactions on Medical Imaging 28(8), 1251–1264 (2009)CrossRefGoogle Scholar
  4. 4.
    Fernández-de Manuel, L., Rubio, J.L., Ledesma-Carbayo, M.J., Pascau, J., Tellado, J.M., Ramón, E., Desco, M., Santos, A.: 3d liver segmentation in preoperative ct images using a levelsets active surface method. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2009, pp. 3625–3628 (2009)Google Scholar
  5. 5.
    Furukawa, D., Shimizu, A., Kobatake, H.: Automatic liver segmentation method based on maximum a posterior probability estimation and level set method. In: Proceedings of MICCAI Workshop on 3D Segmentation in the Clinic: A Grand Challenge, pp. 117–124 (2007)Google Scholar
  6. 6.
    Wang, X., Zheng, C., Li, C., Yin, Y., Feng, D.D.: Automated ct liver segmentation using improved chan-vese model with global shape constrained energy. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2011, pp. 3415–3418 (2011)Google Scholar
  7. 7.
    Ehrhardt, J., Schmidt-Richberg, A., Handels, H.: Simultaneous segmentation and motion estimtion in 4d-ct data using a variational approach. In: Proc. of SPIE, Vol. 6914, 6914371–1 (2008)Google Scholar
  8. 8.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulation. Journal of Computational Physics 79, 12–49 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Chan, T.F., Vese, L.A.: Active contour without edges. IEEE Transaction on Image Processing 10(2), 266–277 (2001)CrossRefzbMATHGoogle Scholar
  10. 10.
    Li, C., Xu, C., Gui, C., Fox, M.D.: Distance regularized level set evolution and its application to image segmentation. IEEE Transaction on Image Processing 19(12), 3243–3254 (2010)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Zhang, K., Zhang, L., Song, H., Zhang, D.: Reinitializaion-free level set evolution via reaction diffusion. IEEE Transaction on Image Processing 22(1), 258–271 (2013)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Merriman, B., Bence, J.K., Osher, S.J.: Motion of multiple junction: A level set approach. Journal of Computational Physics 112(2), 334–363 (1994)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Walita Narkbuakaew
    • 1
  • Hiroshi Nagahashi
    • 2
  • Kota Aoki
    • 2
  • Yoshiki Kubota
    • 3
  1. 1.Interdisciplinary Graduate School of Science and EngineeringTokyo Institute of TechnologyKanagawaJapan
  2. 2.Imaging Science and Engineering LaboratoryTokyo Institute of TechnologyKanagawaJapan
  3. 3.Gunma University Heavy-Ion Medical CenterGunmaJapan

Personalised recommendations