Attenuation Correction during Image Reconstruction

  • Shahla Ahmadi
  • Dariush Sardari
  • Hossein Rajabi
  • Farshid Babapour
  • Marzieh Rahmatpour
Part of the Communications in Computer and Information Science book series (CCIS, volume 404)


The main goal of SPECT imaging is to determine the distribution of injected activity inside patient’s body. However, due to photon attenuation, a quantitative study is encountered with remarkable error. Using Monte Carlo method, it is possible to find the most precise relationship between activity distribution and its projections. Therefore, it is impossible to create mathematical projections that include the effects of attenuation. This helps to have a more realistic comparison between mathematical and real projections, which is a necessary step for image reconstruction using MLEM.


Mont Carlo Attenuation Correction MLEM SPECT 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beriner, D.R.: Nuclear medicine; technology and Techniques 3rd edn. (1994); Chen, W.-K., LinearGoogle Scholar
  2. 2.
    Anger, H.: Scintillation camera. Rev. Sci. Instruction 29, 27-33 (1958); Bushberg, J.T.: The Essential Physics of Medical Imaging, pp. 527–580 (1994)Google Scholar
  3. 3.
    Freeman, L.: Clinical radionuclide imaging, 3rd edn., United States of America, vol. 13, p. 254 (1984)Google Scholar
  4. 4.
    Bruyant, P.P.: Analytic and Iterative Reconstruction Algorithms in SPECT. J. Nucl. Med. 43, 1343–1358 (2002)Google Scholar
  5. 5.
    Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging MI-1, 113–122 (1982)CrossRefGoogle Scholar
  6. 6.
    Keramer, E.L., Sanger, J.J.: Clinical SPECT Imaging. Raven Press, Ltd., New York (1995)Google Scholar
  7. 7.
    Cherry, S., Sorenson, J., Phelps, M.: Physics in Nuclear Medicine, 3rd edn., Philadelphia, Pennsylvania (2003)Google Scholar
  8. 8.
    Zeng, G.L.: Image reconstruction–a tutorial. Comput. Med. Imaging Graph. 25, 97–103 (2001)CrossRefGoogle Scholar
  9. 9.
    Lange, K., Bahn, M., Little, R.: A theoretical study of some maximum likelihood algorithms for emission and transmission tomography. IEEE Trans. Med. Imaging 62, 106–114 (1987)CrossRefGoogle Scholar
  10. 10.
    Tsui, B.M.W., Hu, H.-B., Gilland, D.R., Gullberg, G.T.: Implementation of simultaneous attenuation and detector response correction in SPECT. IEEE Trans. Nucl. Sci. NS-35, 778–783 (1988)Google Scholar
  11. 11.
    Gullberg, G.T., Huesman, R.H., Malko, J.A., Pelc, N.J., Budinger, T.F.: An attenuated projector-backprojector for iterative SPECT reconstruction. Phys. Med. Biol. 30, 799–815 (1985)CrossRefGoogle Scholar
  12. 12.
    Floyd Jr., C.E., Jaszczak, R.J., Greer, K.L., Coleman, R.E.: Inverse Monte Carlo as a unified reconstruction algorithm for ECT. J. Nucl. Med. 27(10), 1577–1585 (1986)Google Scholar
  13. 13.
    Ortuno, J.E., Kontaxakis, G., Guerra, P., Santos, A.: 3D-OSEM transition matrix for high resolution PET Imaging with modeling of the gamma-event detection. In: 2005 IEEE NSS-MIC Conference, Puerto Rico, Conference Record (2005)Google Scholar
  14. 14.
    Motta, A., Damiani, C., Del Guerra, A., Di Domenico, G., Zavattini, G.: Use of a fast EM algorithm for 3D image reconstruction with the YAP-PET tomography. Computerized Medical Imaging and Graphics 26(10), 293–302 (2002)CrossRefGoogle Scholar
  15. 15.
    Loudos, G.K.: An efficient analytical calculation of probability matrix in 2D SPECT. Computerized Medical Imaging and Graphics 32, 83–94 (2008)CrossRefGoogle Scholar
  16. 16.
    Chang, L.: Attenuation correction and in complete projection in SPECT. IEEE 26, 2780 (1979)Google Scholar
  17. 17.
    Patton, J.A., Turkington, T.G.: SPECT/CT Physical Principles and Attenuation correction. Journal of Nuclear Medicine Technology, 1–10 (2008)Google Scholar
  18. 18.
    Chang: A method for attenuation correction in radionuclead computed tomoghraphy. IEEE 25, 638 (1978)Google Scholar
  19. 19.
    Boon, J., Buonocore, M., Cooper, V.: Monte Carlo Validation Diagnostic Radiological Imaging. Med. Phys. 1294–1304 (2000)Google Scholar
  20. 20.
    Andero, P.: Monte Carlo techniques in medical radiation Physics. Phy. Med. Biol. 36, 801 (1991)Google Scholar
  21. 21.
    Segars, W.P.: Development of a new dynamic NURBS-based cardiac torso (NCAT) Phantom (2001)Google Scholar
  22. 22.
    Floyd, C.E., Jaszak, R.J., Greer, K.L., et al.: Inverse Monte Carlo as a unified reconstruction algorithm for ECT. J. Nucle Med. 27, 1577–1585 (1986)Google Scholar
  23. 23.
    Bower, J.E., Floyd, C.E.: Treatment of Compton scattering-current status. Jordered subsets of projection data. IEEE Trans. Med. Imaging 13, 601–609Google Scholar
  24. 24.
    Buvat, I., Lazaro, D., Breton, V.: Fully 3D Monte Carlo reconstruction in SPECT: proof of concept and is that worthwhile? In: Conf. Proc. of the 7th International Meeting on Fully Tree Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Saint-Malo, France, June 29-July 4 (2003)Google Scholar
  25. 25.
    Barrett, H.H., Wilson, D.W.: Noise properties of the EM algorithm. I. Theory Phys. Med. Biol. 39, 833–846 (1994)CrossRefGoogle Scholar
  26. 26.
    Veklerov, E., Liacer, J.: Stopping rule for the MLE algorithm based on statistical hypothesis testing. IEEE Trans Med. lmag. MI-6, 313–319 (1987)CrossRefGoogle Scholar
  27. 27.
  28. 28.
  29. 29.
    Grocn, M.W., Em, W.D.: SPECT in The year. Basic Principles. Journals and Newsletters Media (2000)Google Scholar
  30. 30.
    Andero, P.: Monte carlo techniques in medical radiation physics. Phys. Med. Biol. 36, 801–920 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Shahla Ahmadi
    • 1
  • Dariush Sardari
    • 1
  • Hossein Rajabi
    • 2
  • Farshid Babapour
    • 1
  • Marzieh Rahmatpour
    • 1
  1. 1.Faculty of Engineering, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Medical PhysicsTarbiat Modares UniversityTehranIran

Personalised recommendations