Skip to main content

Comparison of Super-Resolution Methods for HD-Video Endoscopy

Part of the Informatik aktuell book series (INFORMAT)

Abstract

The main question we try to answer in this work is whether it is feasible to employ super-resolution (SR) algorithms to increase the spatial resolution of endoscopic high-definition (HD) images in order to reveal new details which may have got lost due to the limited endoscope magnification of the HD endoscope used (e.g. mucosal structures).

For this purpose we compare the quality achieved of different SR methods. This is done on standard test images as well as on images obtained from endoscopic video frames. We also investigate whether compression artifacts have a noticeable effect on the SR results.

We show that, due to several limitations in case of endoscopic videos, we are not consistently able to achieve a higher visual quality when using SR algorithms instead of bicubic interpolation.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-54111-7_19
  • Chapter length: 6 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-54111-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tischendorf JJW, Gross S, Winograd R, et al. Computer-aided classification of colorectal polyps based on vascular patterns: a pilot study. Endoscopy. 2010;42(3):203–7.

    CrossRef  Google Scholar 

  2. Duda K, Zieli´nski T, Duplaga M. Computationally simple super-resolution algorithm for video from endoscopic capsule. Proc ICSES. 2008; p. 197–200.

    Google Scholar 

  3. List P, Joch A, Lainema J, et al. Adaptive Deblocking Filter. IEEE Trans Circuits Syst Video Technol. 2003;13(7):614–9.

    CrossRef  Google Scholar 

  4. Liu C. Beyond pixels: exploring new representations and applications for motion analysis [dissertation]. Massachusetts Institute of Technology; 2009.

    Google Scholar 

  5. Elad M. A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur. IEEE Trans Image Process. 2001;10(8):1187–93.

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Farsiu S, Robinson D, Elad M, et al. Advances and challenges in super-resolution. Int J Imaging Syst Technol. 2004;14(2):47–57.

    CrossRef  Google Scholar 

  7. Irani M, Peleg S. Improving resolution by image registration. Comp Vis Graph Image Process. 1991 Apr;53(3):231–9.

    Google Scholar 

  8. Zomet A, Rav-Acha A, Peleg S. Robust super-resolution. Proc IEEE. 2001;1:645–50.

    Google Scholar 

  9. Mittal A, Moorthy AK, Bovik AC. No-reference image quality assessment in the spatial domain. IEEE Trans Image Process. 2012;21(12):4695–708.

    CrossRef  MathSciNet  Google Scholar 

  10. Gabarda S, Crist´obal G. Blind image quality assessment through anisotropy. J Opt Soc Am A. 2007;24(12):B42–51.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Häfner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Häfner, M., Liedlgruber, M., Uhl, A. (2014). Comparison of Super-Resolution Methods for HD-Video Endoscopy. In: Deserno, T., Handels, H., Meinzer, HP., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2014. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54111-7_19

Download citation