Skip to main content

Glomerular Filtration Rate Estimation from Dynamic Contrast-Enhanced MRI

  • 2192 Accesses

Part of the Informatik aktuell book series (INFORMAT)

Abstract

The treatment of chronic renal diseases usually involves the estimation of the glomerular filtration rate (GFR). The GFR can be estimated in vivo without blood samples by pharmacokinetic methods. These models employ non-linear curve fitting techniques to obtain model parameters fitting the model to concentration curves extracted from 4D DCE-MRI data. However, currently proposed optimization strategies rely on the choice of the initial values. In this paper, we propose an improved optimization algorithm based on the analytical elimination of half of the parameters of the Sourbron model. This reduction vastly reduces the runtime of a parameter fit and essentially allows to eliminate the need to adjust the initialization to the input data using multiple fits on a uniform search space. With this approach, we are able to estimate the GFR in three of four clinical cases within 10% of the clinically measured GFR.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-54111-7_11
  • Chapter length: 6 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-54111-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hodneland E, et al. In vivo estimation of glomerular filtration in the kidney using DCE-MRI. Proc Int Symp Image Signal Process Anal. 2011; p. 755–61.

    Google Scholar 

  2. Annet ML, et al. Glomerular filtration rate: assessment with dynamic contrastenhanced MRI and cortical-compartment model in the rabbit kidney. J Magn Reson Imaging. 2004; p. 843–9.

    Google Scholar 

  3. Huang A, et al. MR imaging of renal function. Radiol Clin North Am. 2003;41:1001–17.

    CrossRef  Google Scholar 

  4. Bauer L, et al. Clinical appraisal of creatinine clearance as a measurement of glomerular filtration rate. Am J Kidney Dis. 1982;2:337–46.

    Google Scholar 

  5. Myers GL, et al. Recommendations for improving serum creatinine measurment: a report from the laboratory working group of the national kidney disease education program. Clin Chem. 2006; p. 5–18.

    Google Scholar 

  6. Sourbron PSP, et al. MRI-measurment of perfusion and glomerular filtration in the human kidney with a separable compartment model. Invest Radiol. 2008;43(1):40–8.

    CrossRef  Google Scholar 

  7. MATLAB. Version 7.10.0 (R2010a). Natick, MA: The MathWorks Inc.; 2010.

    Google Scholar 

  8. Parker GJ, et al. Automated arterial input function extraction for T1-weighted DCE-MRI. Proc Int Soc Magn Reson Med Sci Meet Exhib. 2003;1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna K. Trull .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trull, A., Berkels, B., Modersitzki, J. (2014). Glomerular Filtration Rate Estimation from Dynamic Contrast-Enhanced MRI. In: Deserno, T., Handels, H., Meinzer, HP., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2014. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54111-7_11

Download citation