Skip to main content

A Formally Verified Generic Branching Algorithm for Global Optimization

  • Conference paper
Verified Software: Theories, Tools, Experiments (VSTTE 2013)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8164))

  • 665 Accesses

Abstract

This paper presents a formalization in higher-order logic of a generic algorithm that is used in automated strategies for solving global optimization problems. It is a generalization of numerical branch and bound algorithms that compute the minimum of a function on a given domain by recursively dividing the domain and computing estimates for the range of the function on each sub-domain. The correctness statement of the algorithm has been proved in the Prototype Verification System (PVS) theorem prover. This algorithm can be instantiated with specific functions for performing particular global optimization methods. The correctness of the instantiated algorithms is guaranteed by simple properties that need to be verified on the specific input functions. The use of the generic algorithm is illustrated with an instantiation that yields an automated strategy in PVS for estimating the maximum and minimum values of real-valued functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Carlier, M., Dubois, C., Gotlieb, A.: A certified constraint solver over finite domains. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 116–131. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Crespo, L.G., Muñoz, C.A., Narkawicz, A.J., Kenny, S.P., Giesy, D.P.: Uncertainty analysis via failure domain characterization: Polynomial requirement functions. In: Proceedings of European Safety and Reliability Conference, Troyes, France (September 2011)

    Google Scholar 

  3. Daumas, M., Lester, D., Muñoz, C.: Verified real number calculations: A library for interval arithmetic. IEEE Transactions on Computers 58(2), 1–12 (2009)

    Article  Google Scholar 

  4. Harrison, J.: Metatheory and reflection in theorem proving: A survey and critique. Technical Report CRC-053, SRI Cambridge, Millers Yard, Cambridge, UK (1995), http://www.cl.cam.ac.uk/jrh13/papers/reflect.dvi.gz+

  5. Lorentz, G.G.: Bernstein Polynomials, 2nd edn. Chelsea Publishing Company, New York (1986)

    MATH  Google Scholar 

  6. Melquiond, G.: Proving bounds on real-valued functions with computations. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 2–17. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Moa, B.: Interval Methods for Global Optimization. PhD thesis, University of Victoria (2007)

    Google Scholar 

  8. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. Cambridge University Press (2009)

    Google Scholar 

  9. Muñoz, C., Carreño, V., Dowek, G., Butler, R.: Formal verification of conflict detection algorithms. International Journal on Software Tools for Technology Transfer 4(3), 371–380 (2003)

    Article  Google Scholar 

  10. Muñoz, C., Narkawicz, A.: Formalization of a Representation of Bernstein Polynomials and Applications to Global Optimization. Journal of Automated Reasoning 51(2), 151–196 (2013), http://dx.doi.org/10.1007/s10817-012-9256-3 , doi:10.1007/s10817-012-9256-3

    Article  Google Scholar 

  11. Neumaier, A.: Complete search in continuous global optimization and constraint satisfaction. Acta Numerica 13, 271–369

    Google Scholar 

  12. Owre, S., Rushby, J., Shankar, N.: PVS: A prototype verification system. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992)

    Google Scholar 

  13. Ray, S., Nataraj, P.S.: An efficient algorithm for range computation of polynomials using the Bernstein form. Journal of Global Optimization 45, 403–426 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Solovyev, A., Hales, T.C.: Formal verification of nonlinear inequalities with Taylor interval approximations. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 383–397. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Narkawicz, A., Muñoz, C. (2014). A Formally Verified Generic Branching Algorithm for Global Optimization. In: Cohen, E., Rybalchenko, A. (eds) Verified Software: Theories, Tools, Experiments. VSTTE 2013. Lecture Notes in Computer Science, vol 8164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54108-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54108-7_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54107-0

  • Online ISBN: 978-3-642-54108-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics