Skip to main content

Ozone in the Troposphere

  • Chapter
  • First Online:
Ozone in the Atmosphere
  • 1403 Accesses

Abstract

The troposphere is the lowest atmospheric layer whose upper boundary, the tropopause, extends from about 18 km altitude in the tropics to 8 km in the polar region. Thus, it comprises about 90 % of the total mass of the Earth’s atmosphere. It contains the air we breathe and the water we drink. Biogenic source gases produced in soils and in the ocean are released into the troposphere, where they are carried along and mixed by winds and turbulences related to the weather systems. It is the troposphere, too, which we use as a waste dump for all kinds of waste gases of human civilisation, from industry, power plants, heating, transportation and other sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anfossi D, Sandroni S, Viarengo S (1991) Tropospheric ozone in the nineteenth century:The Moncalieri series.J. Geophys Res 96(D9):17349–17352

    Article  Google Scholar 

  2. Sandroni S, Anfossi D, Viareng S (1992) Surface ozone levels at the end of the nineteenth century in South America. J Geophys Res 97(D2):2535–2539

    Article  Google Scholar 

  3. Junge CE (1962) Global ozone budget and exchange between stratosphere and troposphere. Tellus XIV:363–377

    Article  Google Scholar 

  4. Vassy A (1961) Données concernant les mesures d’ozone. Année Géophsique Internationale, Sér. II Fasc.3 Meteorologie et ozone. CNRS, Paris

    Google Scholar 

  5. Warmbt W (1966) Neuere Meßergebnisse des bodennahen Ozons. In: Meteorologie, Ergebnisse der Konferenz in Liblice 1964, Academia-Verlag, Prague, pp 51–62

    Google Scholar 

  6. Hering WS, Borden TR (1965) Mean distributions of ozone density over North America, 1963–1964. AFCRL-65-913, Environmental Research Papers No.162, US Air Force

    Google Scholar 

  7. Oltmans SJ, Komhyr WD (1976) Surface ozone in Antarctica. J Geophys Res 81:5359–5364

    Article  Google Scholar 

  8. Holton JR (1990) On the global exchange of MAS between the stratosphere and the troposphere. Mon Weather Rev 47:392–394

    Article  Google Scholar 

  9. Holton JR, Hayes PS, McIntyre PS, Douglass AR, Rood RB, Pfister L (1995) Stratosphere–troposphere exchange. Rev Geophys 33:403–439

    Article  Google Scholar 

  10. Mahlman JD (1997) Dynamics of transport processes in the upper troposphere. Science 276:1079–1083

    Article  Google Scholar 

  11. Stohl A, Bonasoni P, Cristofanelli P, Collins W, Feichter J, Frank A, Forster C, Gerasopoulos E, Gäggeler H, James P, Kentarchos T, Kromp-Kolb H, Krüger B, Land C, Meloen J, Papayannis A, Priller A, Seibert P, Sprenger M, Roelofs GJ, Scheel HE, Schnabel C, Siegmund P, Tobler L, Trickl T, Wernli H, Wirth V, Zanis P, Zerefos C (2003) Stratosphere-troposphere exchange: a review, and what we have learned from STACCATO. J Geophys Res 108(D12):27. doi:10.1029/2002JD002490

    Google Scholar 

  12. Mote PW et al (1996) An atmospheric tape recorder: the imprint of tropical tropopause temperatures on stratospheric waer vapour. J Geophys Res 101:3989–4006

    Article  Google Scholar 

  13. Bischof W, Borchers R, Fabian P, Krüger BC (1985) Increased concentration and vertical distribution of carbon dioxide in the stratosphere. Nature 316:708–710

    Article  Google Scholar 

  14. Waugh DW, Hall TM (2002) Age of stratospheric air: theory, observations, and models. Rev Geophys 40:4. doi:10.1029/2000RG000101

    Google Scholar 

  15. Boering KA et al (1996) Stratospheric transport rates and mean age distribution derived from observations of atmospheric CO2 and N2O. Science 274:1340–1343

    Article  Google Scholar 

  16. Randel WJ, Gille JC, Roche AE, Kumer JB, Mergenthaler JL, Waters JW, Fishbein EF, Lahoz WA (1993) Stratospheric transport from the tropics to middle latitudes by planetary-wave mixing. Nature 365:533–535

    Article  Google Scholar 

  17. Fabian P, Libby WF, Palmer CE (1968) Stratospheric residence time and interhemispheric mixing of Strontium 90 from fallout in rain. J Geophys Res 73:3611–3616

    Article  Google Scholar 

  18. Fabian P (1974) The effect of the SST on the stratospheric distribution of odd nitrogen. Pure Appl Geophys 112:901–912

    Article  Google Scholar 

  19. Danielsen EF (1968) Stratospheric-tropospheric exchange based on radioactivity, ozone and potential vorticity. J Atmos Sci 25:502–518

    Article  Google Scholar 

  20. Dobson GMB (1973) The laminated structure of the ozone in the atmosphere. QJR Met Soc 99:599–607

    Article  Google Scholar 

  21. Appenzeller C (1992) Davies HC (1992) Structure of stratospheric intrusions into the troposphere. Nature 358:50–572

    Article  Google Scholar 

  22. Stohl A, Trickl T (2001) A textbook example of long-range transport: simltaneous observation of ozone maxima of stratospheric and North American origin in the free troposphere over Europe. J Geophys Res 104:30445–30462

    Article  Google Scholar 

  23. Stohl A (2001) A 1-year Lagrangian “climatology” of airstreams in the northern hemisphere troposphere and lowermost stratosphere. J Geophys Res 106:7263–7279

    Article  Google Scholar 

  24. Liu SC et al (1987) Ozone production in the rural troposphere and the implications for regional and global ozone distributions. J Geophys Res 92:4191–4207

    Article  Google Scholar 

  25. Logan JA, Prather MJ, Wofsy SC, McElroy MB (1981) Tropospheric ozone: a global perspective. J Geophys Res 86:7210–7254

    Article  Google Scholar 

  26. Ehhalt DH, Rohrer F (2009) The tropospheric cycle of H2: a critical review. Tellus 61B:500–535

    Article  Google Scholar 

  27. Crutzen PJ (2000) Developments in tropospheric chemistry. In: Zerefos CS, Iaksen ISA, Ziomas I (eds) Chemistry and radiation changes in the ozone layer, NATO science series 8. Kluwer, Dordrecht, pp 1–12. ISBN 0-7923-6513-5 HB

    Chapter  Google Scholar 

  28. Fishman J, Crutzen PJ (1978) The origin of ozone in the troposphere. Nature 274:855–858

    Article  Google Scholar 

  29. Chameides W, Walker JCG (1973) A photochemical theory of tropospheric ozone. J Geophys Res 78:8751–8760

    Article  Google Scholar 

  30. Crutzen PJ (1974) Photochemical reactions initiated by and influencing ozone in the unpolluted troposphere. Tellus 26:47–57

    Article  Google Scholar 

  31. Danielson E, Mohnen V (1977) Project Duststorm: ozone transport, in situ measurements and meteorological analysis of tropopause folding. J Geophys Res 82:5867–5877

    Article  Google Scholar 

  32. Fabian P, Pruchniewicz PG (1977) Meridional distribution of ozone in the troposphere and its seasonal variations. J Geophys Res 82:2063–2073

    Article  Google Scholar 

  33. WMO Global Ozone Research and Monitoring Project-Report No.44: Scientific Assessment of Ozone Depletion 1998.ISBN:92-807-1722-7.Geneva 1999

    Google Scholar 

  34. Monitoring atmospheric composition and climate (MACC) 2010. http://www.gms-atmosphere.eu/d/services/ga/reanalysis/macc/macc_monthly_fields

  35. Junge CE (1981) Die Entwicklung der Erdatmosphäre. Die Naturwissenschaften 68:236–244

    Article  Google Scholar 

  36. Schidlowski M (1982) Content and isotopic composition of reduced carbon in sediments. In: Holland HD, Schidlowski M (eds) Mineral deposits and the evolution of the biosphere. Springer, Berlin, pp 103–122

    Chapter  Google Scholar 

  37. Schlesinger WH (1997) Biogeochemistry, an analysis of global change, 2nd edn. Academic, San Diego, CA

    Google Scholar 

  38. Keeling CD, Chin JFS, Whorf TP (1996) Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382:146–149

    Article  Google Scholar 

  39. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702

    Article  Google Scholar 

  40. Keeling CD (1983) The global carbon cycle: what we know and could know from atmospheric, biospheric and oceanic observations. CONF 820970, Washington, DC, pp 3–62

    Google Scholar 

  41. Olson JS, Garrels RM, Berner RA, Armentano TV, Deyer MI, Yaalon DH (1985) The natural carbon cycle. In: Trabalka JR (ed) Atmospheric carbo dioxide and the global carbon cycle. US Department of Energy, Washington, DC, pp 175–213

    Google Scholar 

  42. Heimann M, Esser G, Haxeltine A, Kaduk J, Kicklighter DW, Knorr W, Kohlmaier GH, McGuire AD, Melillo J, Moore B, Otto RD, Prentice IC, Sauf W, Schloss A, Sitch S, Wittenberg U, Wurth G (1998) Evaluation of terrestrial carbon cycle models through simulations of the seasonal cycle of atmospheric CO2: first results of a model intercomparison study. Global Biogeochem Cy 12:1–24

    Article  Google Scholar 

  43. Scheller S, Goenrich M, Boecher R, Thauer RK, Jaun B (2010) The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465:606–608

    Article  Google Scholar 

  44. Kvensvolden KA (1993) Gas hydrates-geological perspective and global change. Rev Geophys 31:173–187

    Article  Google Scholar 

  45. Müller J-F (1992) Geographic distribution and seasonal variation of surface emissions and deposition velocities of atmospheric trace gases. J Geophys Res 97:3787–3804

    Article  Google Scholar 

  46. Potter CS, Matson PA, Vitonsek PM, Davidson EA (1996) Process modelling of controls on nitrogen trace gas emissions from soils worldwide. J Geophys Res 101:1361–1377

    Article  Google Scholar 

  47. Skiba U, Smith KA, Fowler D (1993) Nitrification and denitrification as sources of nitric oxide and nitrous oxide in a sandy loam soil. Soil Biol Biochem 25:1527–1536

    Article  Google Scholar 

  48. Khalil MAK, Rasmussen RA (1992) The global sources of nitrous oxide. J Geophys Res 97:14651–14660

    Article  Google Scholar 

  49. Machida T, Nakazawa T, Fujii Y, Aoki S, Watanabe O (1995) Increase in the atmospheric nitrous oxide concentration during the last 250 years. Geophys Res Lett 22:2921–2924

    Article  Google Scholar 

  50. Kroeze C, Mosier A, Bouwman L (1999) Closing the global N2O budget: a retrospective analysis 1500-1994. Global Biogeochem Cy 13:1–8

    Article  Google Scholar 

  51. Samarkin V, Madigan MT, Bowles W, Casciotti KL, Priscu JC, McKay CP, Joye SB (2010) Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica. Nat Geosci 3:341–344. doi:10.1038/ngeo847

    Article  Google Scholar 

  52. Duscha H, Borchers R, Fabian P, Bischof W (1990) First results of RASMUS: source gases in the mesosphere. Adv Space Sci 10(6):77–81

    Article  Google Scholar 

  53. WMO (2007) World Meteorological Organization, Scientific assessment of ozone depletion: 2006. Global ozone research and monitoring project, Report No. 50, Geneva, Switzerland

    Google Scholar 

  54. Khalil MAK, Rasmussen RA (1995) The changing composition of the earth’s atmosphere. In: Singh HB (ed) Composition, chemistry and climate of the atmosphere. Van Nostrand Reinhold, New York, pp 50–87

    Google Scholar 

  55. Zimmerman PR, Greenberg JP, Wandiga SO, Crutzen PJ (1982) Termites-A potentially large source of atmospheric methane, carbon dioxide and molecular hydrogen. Science 218:563–565

    Article  Google Scholar 

  56. Houweling S, Dentener F, Lelieveld J (2000) Simulaion of preindustrial atmospheric methane to constrain the global source strength of natural wetlands. J Geophys Res 105:17243–17255

    Article  Google Scholar 

  57. Cicerone RJ, Oremland RS (1988) Biogeochemical aspects of atmospheric methane. Global Biogeochem Cy 2:299–327

    Article  Google Scholar 

  58. Khalil MAK, Rasmussen RA (1990) Constraints on the global sources of methane and an analysis of recent budgets. Tellus 42B:229–236

    Article  Google Scholar 

  59. Holloway T, Levy H, Kasibhatla P (2000) Global distribution of carbon monoxide. J Geophys Res 105:12123–12147

    Article  Google Scholar 

  60. Novelli PC, Masarie KA, Lang PM (1998) Distributions and recent changes of carbon monoxide in the lower troposphere. J Geophys Res 103:19015–19033

    Article  Google Scholar 

  61. Singh ON, Fabian P (1999) Reactive bromine compounds. In: Fabian P, Singh ON (eds) Reactive halogen compounds in the atmosphere, The handbook of environmental chemistry, vol 4E. Springer, Berlin, pp 1–43

    Chapter  Google Scholar 

  62. WMO (2003) Scientific assessment of ozone depletion: 2002, Global ozone research and monitoring project, Report No. 47. World Meteorological Organization, Geneva, Switzerland

    Google Scholar 

  63. Guenther A, Zimmerman P, Wildermuth M (1994) Natural volatile organic-compound emission rate estimates for United States woodland landscapes. Atmos Environ 28:1197–1210

    Article  Google Scholar 

  64. Simpson D, Guenher A, Hewitt CN, Steinbrecher R (1995) Biogenic emissions in Europe I: estimates and uncertainties. J Geophys Res 100:22875–22890

    Article  Google Scholar 

  65. Arey J, Atkinson R, Aschmann SM (1990) Product study of the gas phase reactions of monoterpenes with the OH radical in the presence of NOx. J Geophys Res 95:18539–18546

    Article  Google Scholar 

  66. Geron C, Harley P, Guenther A (2001) Isoprene emission capacity for US tree species. Atmos Environ 35:3341–3352

    Article  Google Scholar 

  67. Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23–88

    Article  Google Scholar 

  68. Roberts JM, Fehsenfeld FC, Albritton DL, Sievers RE (1983) Measurement of monoterpene hydrocarbons at Niwot Ridge, Colorado. J Geophys Res 88:10667–10678

    Article  Google Scholar 

  69. Juuti S, Arey J, Atkinson R (1990) Monoterpene emission rate measurements from a monterey pine. J Geophys Res 95:7515–7519

    Article  Google Scholar 

  70. Kesselmeier J, Kuhn U, Wolf A, Andreae MO, Ciccioli P, Brancaleoni E, Frattoni M, Guenther A, Geenberg J, Vasconcellos PD, de Oliva T, Tavares T, Artaxo P (2000) Atmopheric volatile organic compounds (VOC) at a remote tropical forest site in central Amazonia. Atmos Environ 34:4063–4072

    Article  Google Scholar 

  71. Finlayson-Pitts B, Pitts JN Jr (2000) Chemistry of the upper and lower atmosphere. Academic, San Diego, CA

    Google Scholar 

  72. McDonald RC, Fall R (1993) Detection of substantial emissions of methanol from plants in the atmosphere. Atmos Environ 27A:1709–1713

    Article  Google Scholar 

  73. Goldan PD, Kuster WC, Fehsenfeld FC, Montzka SA (1993) The observation of a C5 alcohol emission in a North American pine forest. Geophys Res Lett 20:1039–1042

    Article  Google Scholar 

  74. Went FW (1960) Blue hazes in the atmosphere. Nature 187:641–643

    Article  Google Scholar 

  75. Pandis SN, Paulson SE, Seinfeld JH, Flagan RC (1991) Aerosol formation in the photo- oxidation of isoprene and beta-pinene. Atmos Environ A 25:997–1008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fabian, P., Dameris, M. (2014). Ozone in the Troposphere. In: Ozone in the Atmosphere. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54099-8_4

Download citation

Publish with us

Policies and ethics