Skip to main content

The Ozone Layer

  • Chapter
  • First Online:
Ozone in the Atmosphere
  • 1471 Accesses

Abstract

Ozone (O3) is formed in the atmosphere when oxygen atoms (O) react with oxygen molecules (O2). In the upper atmosphere solar UV radiation of wavelengths shorter than 242 nm can photolyze O2 molecules and thereby produce O atoms. Since oxygen strongly absorbs solar UV, O2 photolysis is restricted to the upper atmosphere. Figure 3.1, displaying absorption features of oxygen and ozone as a function of wavelength, shows that UV of wavelengths shorter than 242 nm is completely absorbed in the middle atmosphere and definitely does not reach the troposphere. Thus the resulting ozone layer is confined to the middle atmosphere, i.e. the stratosphere and mesosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chapman S (1930) A theory of atmospheric ozone. Mem R Met Soc 3:103–125

    Google Scholar 

  2. Nicolet M (1974) An overview of aeronomic processes in the stratosphere and mesosphere. Can J Chem 52:1381–1396

    Article  Google Scholar 

  3. Dütsch HU (1968) The photochemistry of stratospheric ozone. Q J R Meteorol Soc 94:483–497

    Article  Google Scholar 

  4. Wulf OR, Deming LS (1937) The distribution of atmospheric ozone in equilibrium with solar radiation and the rate of maintenance of the distribution. Terr Magn Atmos Elect 42:195–202

    Article  Google Scholar 

  5. Brewer AW (1949) Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Q J R Meteorol Soc 75:351–363

    Article  Google Scholar 

  6. Brewer AW, Wilson AW (1968) The regions of formation of atmospheric ozone. Q J R Meteorol Soc 94:249–265

    Article  Google Scholar 

  7. Dobson GMB (1956) Origin and distribution of poly-atomic molcules in the atmosphere. Proc Roy Soc London A236:187–193

    Article  Google Scholar 

  8. Newell RE (1963) Transfer through the tropopause and within the stratosphere. Q J R Meteorol Soc 89:167–178

    Article  Google Scholar 

  9. Fabian P, Libby WF (1974) The stratospheric residence time of odd nitrogen and the effect of the SST, studied in a two-dimensional model derived from high-altitude sampling of radioactive debris. US Department of Transportation, third conference on CIAP, pp 103–116

    Google Scholar 

  10. Garcia RR, Hartmann DL (1980) The role of planetary waves in the maintenance of the zonally averaged ozone distribution of the upper stratosphere. J Atmos Sci 37:2248–2264

    Article  Google Scholar 

  11. Holton JR (1990) On the global exchange of mass between the stratosphere and troposphere. Mon Weather Rev 47:392–394

    Article  Google Scholar 

  12. Holton JR, Hayes PS, McIntyre ME, Douglass AR, Rood RB, Pfister L (1995) Stratosphere-troposphere exchange. Rev Geophys 33:403–439

    Article  Google Scholar 

  13. Loyola D, Coldewey RM, Dameris M, Garny H, Stenke A, Van Roozendael M, Lerot C, Balis D, Koukouli M (2009) Global long-term monitoring of the ozone layer – a prerequisite for predictions. Int J Remote Sens 30:4295–4318

    Article  Google Scholar 

  14. Bates DR, Nicolet M (1950) The photochemistry of atmospheric water vapour. J Geophys Res 55:301–327

    Article  Google Scholar 

  15. Hampson J (1964) Photochemical behaviour of the ozone layer. Can Am Res Develop Estab., Tech. Note 1627/64, Valcartier, QC, 280 p

    Google Scholar 

  16. Hesstvedt E (1968) On the effect of vertical eddy transport on atmospheric composition in the mesosphere and lower thermosphere. Geofis Publ 27(4):35–42

    Google Scholar 

  17. Crutzen PJ (1970) The influence of nitrogen oxides on the atmospheric ozone content. Q J R Meteorol Soc 96:320–325

    Article  Google Scholar 

  18. Johnston HS (1971) Reduction of atmospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust. Science 173:517–522

    Article  Google Scholar 

  19. Bates DR, Hays PB (1967) Atmospheric nitric oxide. Planet Space Sci 15:643–676

    Article  Google Scholar 

  20. Stolarski RS, Cicerone RJ (1974) Stratospheric chlorine: a possible sink for ozone. Can J Chem 52:1610–1615

    Article  Google Scholar 

  21. Molina MJ, Rowland FS (1974) Stratospheric sink for chlorofluoromethanes: chlorine atom catalyzed destruction of ozone. Nature 249:810–814

    Article  Google Scholar 

  22. Yung YL, Pinto JP, Watson RT, Sander SP (1980) Atmospheric bromine and ozone perturbations in the lower stratosphere. J Atmos Sci 37:339–353

    Article  Google Scholar 

  23. Fabian P, Pyle JA, Wells RJ (1982) Diurnal variations of minor constituents in the stratosphere modeled as a function of latitude and season. J Geophys Res 87:4981–5000

    Article  Google Scholar 

  24. Fabian P (1980) Der gegenwärtige Stand des Ozonproblems. Naturwissenschaften 67:109–120

    Article  Google Scholar 

  25. Pitari G, Visconti G (1991) Sensitivity of stratospheric ozone to heterogeneous chemistry on sulfate aerosols. Geophys Res Lett 18:833

    Article  Google Scholar 

  26. Hofmann DJ, Solomon S (1989) Ozone destruction through heterogeneous chemistry following the eruption of El Chichon. J Geophys Res 94:5029

    Article  Google Scholar 

  27. World Meteorological Organization (WMO) (1999) Scientific Assessment of Ozone Depletion: 1998, Global Ozone Research and Monitoring Project, Report No. 44, Geneva

    Google Scholar 

  28. Tevini M (1992) Global change research- enhanced UV-B radiation: a risk for plant growth? Global Change Prisma 12, 4–6, Federal Ministry for Reseach and Technology. Bonn, Germany

    Google Scholar 

  29. Vogelmann A, Ackerman TP, Turco RP (1992) Enhancement of biologically effective ultraviolet radiation following volcanic eruptions. Nature 359:47–49

    Article  Google Scholar 

  30. World Meteorological Organization (WMO) (2006) Global Ozone Research and Monitoring Project- Report Number 50: Scientific Assessment of Ozone Depletion. NOAA, NASA, UNEP, WMO, European Commission

    Google Scholar 

  31. Seckmeyer GA, Bais A, Bernhard G, Blumenthaler M, Booth CR, Disterhoft P, Eriksen P, McKenzie RI, Miyauchi M, Roy C (2001) Instruments to measure Solar Ultraviolet Irradiance, Part I: Spectral instruments, Global Atmospheric Watch, Report 125, 30pp. WMO Geneva, Switzerland

    Google Scholar 

  32. Kylling A, Webb AR, Bais AF, Blumthaler M, Schmitt R, Thiel S, Kazantzidis A, Kift R, Misslbeck M, Schallhart B, Schreder J, Topaloglou C, Kazadzis S, Rimmer J (2003) Actinic flux determination from measurements of irradiance. J Geophys Res 108(D16):4506. doi:10.1029/2002JD003236

    Article  Google Scholar 

  33. Schallhart B, Huber M, Blumthaler M (2004) Semi-empirical method for the conversion of spectral UV global irradiance data into actinic flux. Atmos Environ 38(26):4341–4346

    Article  Google Scholar 

  34. Krotkov NA, Herman JR, Fioletov V, Seftor C, Larko D, Vasilikov A, Labow G (2004) Boundary layer absorbing aerosol correction of an expanded UV irradiance database from satellite Total Ozone Mapping Spectrometer. Proc, Quadrnnial Ozone Symposium Kos, Greece

    Google Scholar 

  35. WMO (1997) Report of the WMO-WHO Meeting of Experts on Standardization of UV Indices and their Dissemination to the Public. Report 127, WMO/WHO, Les Diablerets, Switzerland

    Google Scholar 

  36. Levelt PF, Hilsenrath E, Leppelmeier GW, van der Oord GHJ, Bhartia PK, Tamminen J, de Haan JF, Veefkind JP (2006) Science objectives of the ozone monitoring instruments. IEEE Trans Geosci Remote Sens 44(5):1199–1208

    Article  Google Scholar 

  37. Tanskanen A, Krotkov NA, Herman JR, Arola A (2006) Surface ultraviolet irradiance from OMI. IEEE Trans Geosci Remote Sens 44(5):1267–1271

    Article  Google Scholar 

  38. Thorne RM (1980) The importance of energetic particle precipitation on the chemical composition of the middle atmosphere. Pure Appl Geophys 118:128–151

    Article  Google Scholar 

  39. Crutzen PJ, Solomon S (1980) Response of mesospheric ozone to particle precipitation. Planet Space Sci 28:1147

    Article  Google Scholar 

  40. Heath DF, Krueger AJ, Crutzen PJ (1977) Solar proton event and the atmospheric ozone layer. Science 197:886

    Article  Google Scholar 

  41. Fabian P, Pyle JE, Wells RJ (1979) The August 1972 solar proton event and the atmospheric ozone layer. Nature 277:458–460

    Article  Google Scholar 

  42. Reagan JB, Meyerott RE, Nighingale RW, Gunton RC, Johnson RG, Evans JE, Imhof WL, Heth DF, Krueger AJ (1981) Effects of the August 1972 solar particle event on stratospheric ozone. J Geophys Res 86:1473–1494

    Article  Google Scholar 

  43. Jackman CH, Frederick JE, Stolarski RS (1989) Production of odd nitrogen in the stratosphere and mesosphere: an intercomparison of south strengths. J Geophys Res 85:7495–7505

    Article  Google Scholar 

  44. Solomon S, Crutzen PJ (1981) Analysis of the August 1972 solar proton event including chlorine chemistry. J Geophys Res 86:1140–1146

    Article  Google Scholar 

  45. McPeters RD, Jackman CH, Stassinoupoulos EG (1981) Observations of ozone depletion associated with solar proton events. J Geophys Res 86:12071–12081

    Article  Google Scholar 

  46. Gaines EE, Chenette DL, Imhof WL, Jackman CH, Winningham JD (1995) Relative electron fluxes in My 1992 and their effect on the middle atmosphere. J Geophys Res 100:1027–1033

    Article  Google Scholar 

  47. Jackman CH, Fleming EL, Vitt FM (2000) Influence of extremely large solar proton events in a changing atmosphere. J Geophys Res 105:11659–11670

    Article  Google Scholar 

  48. Palmer AS, van Ommen TD, Curran MAJ, Morgan V (2001) Ice-core evidence for a small solar-source of atmospheric nitrate. Geophys Res Lett 28:1953–1956

    Article  Google Scholar 

  49. Angell JK, Korshover J (1973) Quasi-binnal and longterm fluctuations in total ozone. Mon Weather Rev 101:426

    Article  Google Scholar 

  50. Paetzold HK, Piscalar F, Zschörner H (1973) Secular variation of the stratospheric ozone layer over middle Europe the solar cycles from 1951 to 1972. Nature Phys Sci 140:106

    Google Scholar 

  51. Penner JE, Chang JE (1980) The relation between atmospheric trace species variabilities and solar UV variabilities. J Geophys Res 85:5523–5528

    Article  Google Scholar 

  52. Keating GM (1979) Relation between monthly variations of global ozone and solar activity. Nature 274:873–874

    Article  Google Scholar 

  53. Chandra S (1984) An assessment of possible ozone-solar cycle relationship inferred from NIMBUS 4 BUV data. J Geophys Res 89:1373–1379

    Article  Google Scholar 

  54. Garcia RR, Solomon S, Roble RG, Rusch DW (1984) A numerical response of the middle atmosphere to the 11-year solar cycle. Planet Space Sci 32:411–423

    Article  Google Scholar 

  55. Angell JK (1989) On the relation between atmospheric ozone and sunspot number. J Clim 2:1404–1416

    Article  Google Scholar 

  56. McCormack JP, Hood LL (1996) Apparent solar cycle variation of upper stratospheric ozone and temperature: Latitude and seasonal dependences. J Geophys Res 101:20933–20944

    Article  Google Scholar 

  57. Shindell D, Rind D, Balachandran N, Lean J, Lonergan P (1999) Solar cycle variability ozone, an climate. Science 284:35–308

    Article  Google Scholar 

  58. Wuebbles DJ, Wei C-F, Patten KO (1998) Effects on stratospheric ozone and temperature during the Maunder Minimum. Geophys Res Lett 25:523–526

    Article  Google Scholar 

  59. Whitten RC, Cuzzi J, Borucki WJ, Wolfe JH (1976) Effect of nearby supernova explosion on atmospheric ozone. Nature 263:398

    Article  Google Scholar 

  60. Ruderman MA (1974) Possible consequences of nearby supernova explosions for atmospheric ozone and terrestrial life. Science 184:1079

    Article  Google Scholar 

  61. Hunt GE (1978) Possible climatic and biological impact of nearby supernova. Nature 271:430

    Article  Google Scholar 

  62. Reid GC, Isaksen ISA, Holzer TE, Crutzen PJ (1976) Influence of ancient solar proton events on the evolution of life. Nature 259:177

    Article  Google Scholar 

  63. Thiemens MH, Savarino J, Farquhar J, Bao H (2001) Mss-independent isotopic compositions in terrestral and extraterrestrial solids and their aplications. Acc Chem Res 34(8):645–652

    Article  Google Scholar 

  64. Thiemens MH, Heidenreich J III (1983) The mass independent fractionation of oxygen: a novel effect and the possible cosmochemical implications. Science 219:1073–1075

    Article  Google Scholar 

  65. Mauersberger K (1981) Measurement of heavy ozone in the stratosphere. Geophys Res Lett 8:935

    Article  Google Scholar 

  66. Krankowsky P, Lämmerzahl P, Mauersberger K (2000) Isotopic measurements of stratospheric ozone. Geophys Res Lett 27:2593

    Article  Google Scholar 

  67. Mauersberger K, Lämmerzahl P, Krankowsky P (2001) Stratospheric ozone isotope enrichments-revisited. Geophys Res Lett 28:3155

    Article  Google Scholar 

  68. Thiemens MH (2002) Mass-independent isotope effects and their use in understanding natural processes. Isr J Chem 42:43–54

    Article  Google Scholar 

  69. Yung YL, DeMore WB, Pinto JP (1991) Isotopic exchange between carbon dioxide and ozone via O(1D) in the stratosphere. Geophys Res Lett 18:13–16

    Article  Google Scholar 

  70. Fabian P, Rollenbeck R, Spichtinger N, Dominguez G, Brothers L, Thiemens MH (2009) Sahara dust, volcanoes, biomass burning: pathways of nutrients into Andean rainforests. Adv Geosci 22:85–94

    Article  Google Scholar 

  71. Volz A, Kley D (1988) Evaluation of the Montsouris series of ozone measurements made in the nineteenth century. Nature 332:240–242

    Article  Google Scholar 

  72. Anfossi D, Sandroni S, Viarengo S (1991) Tropospheric ozone in the nineteenth century: the Moncalieri series. J Geophys Res 96:17349–17532

    Article  Google Scholar 

  73. Ehmert A, Ehmert H (1941) Ãœber die chemische Bestimmung des Ozongehaltes der Luft, Forschung und Erfahrung Ber. RWD A 13, 1941, reprinted in Ber. Dt. Wetterdienstes US Zone 11, 67-71, Bad Kissingen, 1949

    Google Scholar 

  74. Dobson GMB (1931) A photoelectric spectrometer for measuring the amount of atmospheric ozone. Proc Phys Soc Lond 43:324–339

    Article  Google Scholar 

  75. Gustin GP (1963) Universal Ozonometer. Proc Main Geophys Obs Leningrad 141:83–98

    Google Scholar 

  76. Bojkov RD (1969) Differences in Dobson spectrophotometer and filter ozonometer measurements of total ozone. J Appl Meteorol 8:362–368

    Article  Google Scholar 

  77. Gustin GP, Sokolenko SA, Kovalyov VA (1985) Total ozone measuring instruments used at the USSR measuring network in atmospheric ozone. In: Zerefos CS, Ghazi A (eds) Proc Quadrennial Ozone Symposium Halkidiki/Greece, 1984. D.Reidel, NL, pp 543–546

    Google Scholar 

  78. Brewer AW (1973) A replacement of Dobson spectrophotometer. Pure Appl Geophys 106–108:919–927

    Article  Google Scholar 

  79. Götz FWP, Meetham AR, Dobson GMB (1934) The vertical distribution of ozone in the atmosphere. Proc R Soc Lond A 145:416–446

    Article  Google Scholar 

  80. Dütsch HU (1959) Vertical ozone distribution from Umkehr observations. Arch Met Geophys Bioclim A 11:240–251

    Article  Google Scholar 

  81. Brewer AW, Milford JR (1960) The Oxford–Kew ozone sonde. Proc R Soc Lond A 256:470–495

    Article  Google Scholar 

  82. Komhyr WD (1969) Electrochemical concentration cells for gas analysis. Ann Geophys 25:203–210

    Google Scholar 

  83. Logan JA (1994) Trends in the vertical distribution of ozone: an analysis of ozonesonde data. J Geophys Res 99:25553–25585

    Article  Google Scholar 

  84. World Meteorological Organization (WMO) (1989) Global Ozone Research and Monitoring Project, Report Nr. 18, Geneva

    Google Scholar 

  85. McPeters RD, Hollandsworth SM, Flynn LE, Herman JR, Senor CJ (1996) Long-Term ozone trends derived from the 16 years combined NIMBUS-7/Meteor-3 TOMS version 7 record. Geophys Res Lett 23:3699–3702

    Article  Google Scholar 

  86. Rusch DW, Clancy RT, Bhartia PK (1994) Comparison of satellite measurements of ozone and ozone trends. J Geophys Res 99:20501–20511

    Article  Google Scholar 

  87. Jiang Y, Yung YL (1996) Concentrations of Tropospheric Ozone from 1979 to 1992 over Tropical Pacific South America from TOMS Data. Science 272:714–716

    Article  Google Scholar 

  88. Hudson RD, Thompson AM (1998) Tropical tropospheric ozone from total ozone mapping spectrometer by a modified residual method. J Geophys Res 103:22129–22145

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fabian, P., Dameris, M. (2014). The Ozone Layer. In: Ozone in the Atmosphere. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54099-8_3

Download citation

Publish with us

Policies and ethics