Skip to main content

Forest Management and Biodiversity in Size-Structured Forests Under Climate Change

  • Chapter
Dynamic Optimization in Environmental Economics

Part of the book series: Dynamic Modeling and Econometrics in Economics and Finance ((DMEF,volume 15))

Abstract

Climate change is threatening biodiversity conservation at a global scale, urging the need for action in order to prevent current and future losses. In forestry, the consideration of some stand features such as requiring a certain volume of deadwood and/or large trees as a part of the management regime may help to preserve and enhance biodiversity. However, it is likely to lead to a decrease in the benefits obtained from timber sales. This chapter presents a bioeconomic model that allows the optimal selective logging regime of a size-distributed forest to be determined, while taking climate change and biodiversity into account. It analyzes to what extent structural targets related to biodiversity affect the optimal forest management regime and the profitability of forests. For this purpose, an empirical analysis under various climate change scenarios is conducted for two diameter-distributed stands of Pinus sylvestris in Catalonia. The results show that the costs of biodiversity conservation in terms of reduced profitability can be significant, and augment with climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Assisted natural regeneration (ANR) is a cost-effective regeneration method that facilitates forest growth. It is based on the natural regeneration of forest trees, and aims to accelerate natural succession by removing or reducing barriers, such as intra-specific competition, and forest disturbances (Shono etĀ al. 2007). We assume that the ingrowth of trees is sufficiently large, and thus the effect of ANR is limited to obtaining the optimal number of trees. Although it represents a simplification, the effect is not decisive since insufficient ingrowth could be resolved through enrichment planting, that is, by planting additional trees to reach the desired number of trees.

References

  • Alberdi, I., Saura, S., & MartĆ­nez, F. J. (2005). El estudio de la biodiversidad en el tercer inventario forestal nacional. Cuadernos de la Sociedad EspaƱola de Ciencias Forestales, 19, 11ā€“19.

    Google ScholarĀ 

  • Alig, R. J., Adams, D. M., & McCarl, B. A. (2002). Projecting impacts of global climate change on the US forest and agriculture sectors and carbon budgets. Forest Ecology and Management, 169, 3ā€“14.

    ArticleĀ  Google ScholarĀ 

  • BrƤnnstrƶm, ƅ., Carlsson, L., & Simpson, D. (2013). On the convergence of the escalator boxcar train. SIAM Journal on Numerical Analysis, 51, 3213ā€“3231.

    ArticleĀ  Google ScholarĀ 

  • Brin, A., Brustel, H., & Jactel, H. (2009). Species variables or environmental variables as indicators of forest biodiversity: a case study using saproxylic beetles in Maritime pine plantations. Annals of Forest Science, 66, 306. doi:10.1051/forest/2009009.

    ArticleĀ  Google ScholarĀ 

  • Brooke, A., Kendrick, D., & Meeraus, A. (1992). GAMS: a userā€™s guide. San Francisco: The Scientific Press. Release 2.25.

    Google ScholarĀ 

  • BĆ¼tler, R., Angelstam, P., Ekelund, P., & Schlaepfer, R. (2004). Dead wood threshold values for the three-toed woodpecker presence in boreal and sub-Alpine forest. Biological Conservation, 119, 305ā€“318.

    ArticleĀ  Google ScholarĀ 

  • Camprodon, J., SalvanyĆ , J., & Soler-Zurita, J. (2008). The abundance and suitability of tree cavities and their impact on hole-nesting bird populations in beech forests of NE Iberian Peninsula. Acta Ornithologica, 43(1), 17ā€“31.

    ArticleĀ  Google ScholarĀ 

  • CaƱellas, I., Martinez GarcĆ­a, F., & Montero, G. (2000). Silviculture and dynamics of Pinus sylvestris L. stands in Spain. InvestigaciĆ³n Agraria: Sistemas y Recursos Forestales. Fuera de Serie 1.

    Google ScholarĀ 

  • Conrad, J., & Clark, C. (1987). Natural resource economics. Cambridge: Cambridge University Press.

    BookĀ  Google ScholarĀ 

  • Croitoru, L. (2007). Valuing the non-timber forest products in the Mediterranean region. Ecological Economics, 63(4), 768ā€“775.

    ArticleĀ  Google ScholarĀ 

  • de Roos, A. (1988). Numerical methods for structured population models: the escalator boxcar train. Numerical Methods for Partial Differential Equations, 4, 173ā€“195.

    ArticleĀ  Google ScholarĀ 

  • de Roos, A. (1997). A gentle introduction to physiologically structured population models. In S. Tuljapurkar & H. Caswell (Eds.), Structured populations models in marine, terrestrial and freshwater systems (pp. 119ā€“204). New York: Chapman & Hall.

    ChapterĀ  Google ScholarĀ 

  • Doyon, F., Gagnon, D., & Giroux, J. (2005). Effects of strip and single-tree selection cutting on birds and their habitat in a southwestern Quebec northern hardwood forest. Forest Ecology and Management, 209, 106ā€“116.

    ArticleĀ  Google ScholarĀ 

  • EU (2006). Communication from the Commission to the Council and the European Parliament on an EU Forest Action Plan. Available in: http://europa.eu/legislation_summaries/agriculture/environment/l24277_en.htm; accessed 28.02.2013.

  • Garcia-Gonzalo, J., Peltola, H., BriceƱo-Elizondo, E., & KellomƤki, S. (2007). Effects of climate change and management on timber yield in boreal forests, with economic implications: a case study. Ecological Modelling, 209, 220ā€“234.

    ArticleĀ  Google ScholarĀ 

  • Garrett, K. A., Dobson, A. D. M., Kroschel, J., Natarajan, B., Orlandini, S., Tonnang, H. E. Z., & Valdivia, C. (2012). The effects of climate variability and the color of weather time series on agricultural diseases and pests, and on decisions for their management. Agricultural and Forest Meteorology, 170, 216ā€“227.

    ArticleĀ  Google ScholarĀ 

  • Goetz, R., Hritonenko, N., Xabadia, A., & Yatsenko, Y. (2008). Using the escalator boxcar train to determine the optimal management of a size-distributed forest when carbon sequestration is taken into account. Lecture Notes in Computer Science, 4818, 323ā€“330.

    Google ScholarĀ 

  • Goetz, R., Hritonenko, N., Mur, R., Xabadia, A., & Yatsenko, Y. (2010). Forest management and carbon sequestration in size-structured forests: the case of Pinus sylvestris in Spain. Forest Science, 56, 242ā€“256.

    Google ScholarĀ 

  • Goetz, R., Xabadia, A., & Calvo, E. (2011). Optimal forest management in the presence of intra-specific competition. Mathematical Population Studies, 181, 151ā€“171.

    ArticleĀ  Google ScholarĀ 

  • GonzĆ”lez, J., Pukkala, T., & PalahĆ­, M. (2005). Optimizing the management of Pinus sylvestris L. stand under risk of fire in Catalonia (north-east of Spain). Annals of Forest Science, 62, 493ā€“501.

    ArticleĀ  Google ScholarĀ 

  • Harmon, M. E., Franklin, J. F., & Swanson, F. J. (1986). Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research, 15, 133ā€“302.

    ArticleĀ  Google ScholarĀ 

  • Heimann, M., & Reichstein, M. (2008). Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 451, 289ā€“292.

    ArticleĀ  Google ScholarĀ 

  • Hunter, M. L. (1990). Wildlife, forest and forestry. Principles of managing forests for biological diversity (p. 370). New Jersey: Prentice Hall.

    Google ScholarĀ 

  • Hynynen, J., Ojansuu, R., HƶkkƤ, H., Siipilehto, J., Salminen, H., & Haapala, P. (2002). Models for predicting stand development in MELA system, Finnish Forest Research Institute 835.

    Google ScholarĀ 

  • IbƔƱez, J. (2004). El bosc espcies dominants, existncies, estructura i altres caracterstiques. In J. Terradas & F. Rod (Eds.), Els Boscos de Catalunya: Estructura, DinĆ mica i Funcionament. Generalitat de Catalunya (pp. 56ā€“93). Barcelona: Department de Medi Ambient i Habitatge

    Google ScholarĀ 

  • Jƶnsson, M. T., & Jonsson, B. G. (2007). Assessing coarse woody debris in Swedish woodland key habitats: implications for conservation and management. Forest Ecology and Management, 242, 363ā€“373.

    ArticleĀ  Google ScholarĀ 

  • Koskela, E., Ollikainen, M., & Pukkala, T. (2007). Biodiversity policies in commercial boreal forests: optimal design of subsidy and tax combinations. Forest Policy and Economics, 9, 982ā€“995.

    ArticleĀ  Google ScholarĀ 

  • Mackensen, J., Bauhus, J., & Webber, E. (2003). Decomposition rates of coarse woody debrisā€”a review with particular emphasis on Australian tree species. Australian Journal of Botany, 51(1), 27ā€“37.

    ArticleĀ  Google ScholarĀ 

  • MƤkelƤ, A. (1997). A carbon balance model of growth and self-pruning in trees based on structural relationships. Forest Science, 43, 7ā€“24.

    Google ScholarĀ 

  • MƤkelƤ, A., del Rio, M., Hynynen, J., Hawkins, M. J., Reyer, K., Soares, P., van Oijen, M., & TomĆ©, M. (2012). Using stand-scale forest models for estimating indicators of sustainable forest management. Forest Ecology and Management, 285, 164ā€“178.

    ArticleĀ  Google ScholarĀ 

  • McComb, W., & Lindenmayer, D. (1999). Dying, dead and down trees. In M. L. Hunter (Ed.), Managing biodiversity in forest ecosystems (pp. 335ā€“372). Cambridge: Cambridge University Press.

    ChapterĀ  Google ScholarĀ 

  • Metz, J., & Diekmann, O. (1986). The dynamics of physiologically structured populations. Springer lecture notes in biomathematics. Heidelberg: Springer.

    BookĀ  Google ScholarĀ 

  • Millar, R., & Myers, R. (1990). Modelling environmentally induced change in growth for Atlantic Canada cod stocks. ICESā€”International Councial for the Exploration of the Sea C.M./G24.

    Google ScholarĀ 

  • Moning, C., Werth, S., Dziock, F., BƤssler, C., Bradtka, J., Hothom, T., & MĆ¼ller, J. (2009). Lichen diversity in temperate montane forests is influenced by forest structure more than climate. Forest Ecology and Management, 258, 745ā€“751.

    ArticleĀ  Google ScholarĀ 

  • Murray, B. C., Sohngen, B. L., Sommer, A. J., Depro, B. M., Jones, K. M., McCarl, B. A., Gillig, D., DeAngelo, B., & Andrasko, K. (2005). EPA-R-05-006. Greenhouse gas mitigation potential in US forestry and agriculture. Economic modeling of effects of climate change on the forest sector and mitigation options, Washington, DC: US Environmental Protection Agency, Office of Atmospheric Programs 144.

    Google ScholarĀ 

  • Muzicant, J. (1980). Systeme mit verteilten Parametern in der Bioƶkonomie. Wien: Technische Universitat. Dissertation.

    Google ScholarĀ 

  • Nilsson, S. G., Hedin, J., & Niklasson, M. (2001). Biodiversity and its assessment in boreal and nemoral forests. Scandinavian Journal of Forest Research, 16(3), 10ā€“26.

    ArticleĀ  Google ScholarĀ 

  • Norddahl-Kirsch, M. M., & Bradshaw, R. H. W. (2004). European forest types for biodiversity assessmentā€”quantitative approaches. European Forest Institute Proceedings, 51, 134ā€“142.

    Google ScholarĀ 

  • Ɠdor, P., Heilmann-Clausen, J., Christensen, M., Aude, E., van Dort, K. W., Piltaver, A., Siller, I., Veerkamp, M. T., Walleyn, R., StandovĆ”r, T., van Hees, A. F. M., Kosec, J., Matočec, N., Kraigher, H., & Grebenc, T. (2006). Diversity of dead wood inhabiting fungi and bryophytes in semi-natural beech forest in Europe. Biological Conservation, 131, 58ā€“71.

    ArticleĀ  Google ScholarĀ 

  • PalahĆ­, M., & Pukkala, T. (2003). Optimising the management of Scots Pine (Pinus sylvestris L.) stands in Spain based on individual-tree models. Annals of Forest Science, 60, 105ā€“114.

    ArticleĀ  Google ScholarĀ 

  • PenttilƤ, R., Siitonen, J., & Kuusinen, M. (2004). Polypore diversity in managed and old-growth boreal Picea abies forests in southern Finland. Biological Conservation, 117, 271ā€“283.

    ArticleĀ  Google ScholarĀ 

  • Perez-Garcia, J., Joyce, L. A., McGuire, A. D., & Xiao, X. (2002). Impacts of climate change on the global forest sector. Climatic Change, 54, 439ā€“461.

    ArticleĀ  Google ScholarĀ 

  • Rosenvald, R., & LƵhmus, A. (2008). For what, when and where is green-tree retention better than clearcutting? A review of the biodiversity aspects. Forest Ecology and Management, 255(1), 1ā€“15.

    ArticleĀ  Google ScholarĀ 

  • Ruosteenoja, K., Carter, T., JylhƤ, K., & Tuomenvirta, H. (2003). Future climate in world regions: an intercomparison of model-based projections for the new IPCC emissions scenarios. The Finnish Environment. Finland, Finnish Environment Institute 644.

    Google ScholarĀ 

  • Sawadogo, L., Tiveau, D., & Nygard, R. (2005). Influence of selective tree cutting, livestock and prescribed fire on herbaceous biomass in the Savannah woodlands of Burkina Faso, West Africa. Agriculture, Ecosystems & Environment, 105, 335ā€“345.

    ArticleĀ  Google ScholarĀ 

  • Scarpa, R., Hutchinson, W., Chilton, S., & Buongiorno, J. (2000). Importance of forest attributes in the willingness to pay for recreation: a contingent valuation study of Irish forests. Forest Policy and Economics, 1, 315ā€“329.

    ArticleĀ  Google ScholarĀ 

  • Shono, K., Cadaweng, E. A., & Durst, P. B. (2007). Application of assisted natural regeneration to restore degraded tropical forestlands. Restoration Ecology, 15, 620ā€“626.

    ArticleĀ  Google ScholarĀ 

  • Shugart, H., Sedjo, R., & Sohngen, B. (2003). Forests and global climate change: potential impacts on US forest resources (Vol.Ā 52). Washington: Pew Center on Global Climate Change.

    Google ScholarĀ 

  • Sohngen, B., Mendelsohn, R., & Sedjo, R. (2001). A global model of climate change impacts on timber markets. Journal of Agriculture and Resource Economics, 26(2), 326ā€“343.

    Google ScholarĀ 

  • Solberg, B., Moiseyev, A., & Kallio, A. M. I. (2003). Economic impacts of accelerating forest growth in Europe. Forest Policy and Economics, 5, 157ā€“171.

    ArticleĀ  Google ScholarĀ 

  • St-Laurent, M.-H., Ferron, J., HachĆ©, S., & Gagnon, R. (2008). Planning timber harvest of residual forest stands without compromising bird and small mammal communities in boreal landscapes. Forest Ecology and Management, 254, 261ā€“275.

    ArticleĀ  Google ScholarĀ 

  • Steele, R. C. (1972). Wildlife conservation in woodlands. London: HMSO.

    Google ScholarĀ 

  • Summerville, K. S., & Crist, T. O. (2002). Effects of timber harvest on forest Lepidoptera: community, guild, and species responses. Ecological Applications, 12(3), 820ā€“835.

    ArticleĀ  Google ScholarĀ 

  • Tahvonen, O., Pukkala, T., Laiho, O., Lahde, E., & NiinimƤki, S. (2010). Optimal management of uneven-aged Norway spruce stands. Forest Ecology and Management, 260, 106ā€“115.

    ArticleĀ  Google ScholarĀ 

  • Torras, O., & Saura, S. (2008). Effects of silvicultural treatments on forest biodiversity indicators in the Mediterranean. Forest Ecology and Management, 255, 3322ā€“3330.

    ArticleĀ  Google ScholarĀ 

  • UNFCCC (1997). Kyoto protocol to the United Nations framework convention on climate change.

    Google ScholarĀ 

  • Vaillancourt, M. A., Drapeau, P., Gauthier, S., & Robert, M. (2008). Availability of standing trees for large cavity-nesting birds in the eastern boreal forest of QuebĆ©c, Canada. Forest Ecology and Management, 255, 2272ā€“2285.

    ArticleĀ  Google ScholarĀ 

  • van Kooten, G. C., & Sohngen, B. (2007). Economics of forest ecosystem carbon sinks: a review. International Review of Environmental and Resource Economics, 1, 237ā€“269.

    ArticleĀ  Google ScholarĀ 

  • von Bertalanffy, L. (1957). Quantitative laws in metabolism and growth. The Quarterly Review of Biology, 32, 217ā€“231.

    ArticleĀ  Google ScholarĀ 

  • White, E., Alig, R., & Haight, R. (2010). The forest sector in a climate-changed environment. Economic modeling of effects of climate change on the forest sector and mitigation options: a compendium of briefing papers. General Technical Report PNW-GTR-833, US Department of Agriculture, Forest Service, Pacific Northwest Research Station.

    Google ScholarĀ 

  • Whittam, R., McCracken, J., Francis, C., & Gartshore, M. (2002). The effects of selective logging on nest-site selection and productivity of hooded warblers (Wilsonia citrina) in Canada. Canadian Journal of Zoology, 80, 644ā€“654.

    ArticleĀ  Google ScholarĀ 

  • Zhou, L., Dai, L., Gu, H., & Zhong, L. (2007). Review on the decomposition and influence factors of coarse woody debris in forest ecosystem. Journal of Forestry Research, 18, 48ā€“54.

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Spanish Ministry of Science and Technology grant Econ2010-17020, with partial funding from the program FEDER of the European Union, and of the Government of Catalonia grants XREPP and 2009 SGR189.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renan Goetz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goetz, R., CaƱizares, C., Pujol, J., Xabadia, A. (2014). Forest Management and Biodiversity in Size-Structured Forests Under Climate Change. In: Moser, E., Semmler, W., Tragler, G., Veliov, V. (eds) Dynamic Optimization in Environmental Economics. Dynamic Modeling and Econometrics in Economics and Finance, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54086-8_12

Download citation

Publish with us

Policies and ethics