Skip to main content

Infectious Disease Testing

  • Chapter
  • First Online:
Molecular Diagnostics for Dermatology

Abstract

Bacteria, viruses, fungi, and parasites all have nucleic acid genomes, which can be targeted by highly sensitive and specific molecular assays. Molecular assays can be designed to be highly specific to one species or capable of detecting multiple different pathogens. Over the last two decades, testing for many infectious pathogens has transitioned to molecular methods due to the limitations of culture, serology, and special stain techniques. Dermatology-related molecular infectious disease assays can be valuable for uncommon organisms and/or when the clinical and histopathologic findings are nonspecific. In this setting, assays that are capable of detecting multiple different organisms simultaneously are advantageous since they are not limited by clinical suspicion. In addition to their diagnostic use for identifying pathogens, molecular testing may have additional applications, including the identification of viral genomes in cutaneous neoplasms (for aiding in tumor diagnosis) and the identification of organisms with antimicrobial resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The CPT codes are from 2014 listings and are provided for reference only, not as a billing guide [1]. Recommended codes may vary depending on molecular targets and testing methods. These are updated annually. A reference for physician fee schedules can be found at www.cms.gov.

  2. 2.

    The CPT codes are from 2014 listings and are provided for reference only, not as a billing guide [1]. Recommended codes may vary depending on molecular targets and testing methods. These are updated annually. A reference for physician fee schedules can be found at www.cms.gov.

  3. 3.

    The CPT codes are from 2014 listings and are provided for reference only, not as a billing guide [1]. Recommended codes may vary depending on molecular targets and testing methods. These are updated annually. A reference for physician fee schedules can be found at www.cms.gov.

  4. 4.

    The CPT codes are from 2014 listings and are provided for reference only, not as a billing guide [1]. Recommended codes may vary depending on molecular targets and testing methods. These are updated annually. A reference for physician fee schedules can be found at www.cms.gov.

  5. 5.

    . The CPT codes are from 2014 listings and are provided for reference only, not as a billing guide [1]. Recommended codes may vary depending on molecular targets and testing methods. These are updated annually. A reference for physician fee schedules can be found at www.cms.gov.

  6. 6.

    The CPT codes are from 2014 listings and are provided for reference only, not as a billing guide [1]. Recommended codes may vary depending on molecular targets and testing methods. These are updated annually. A reference for physician fee schedules can be found at www.cms.gov.

  7. 7.

    The CPT codes are from 2014 listings and are provided for reference only, not as a billing guide [1]. Recommended codes may vary depending on molecular targets and testing methods. These are updated annually. A reference for physician fee schedules can be found at www.cms.gov.

  8. 8.

    The CPT codes are from 2014 listings and are provided for reference only, not as a billing guide [1]. Recommended codes may vary depending on molecular targets and testing methods. These are updated annually. A reference for physician fee schedules can be found at www.cms.gov.

  9. 9.

    The CPT codes are from 2014 listings and are provided for reference only, not as a billing guide [1]. Recommended codes may vary depending on molecular targets and testing methods. These are updated annually. A reference for physician fee schedules can be found at www.cms.gov.

  10. 10.

    The CPT codes are from 2014 listings and are provided for reference only, not as a billing guide [1]. Recommended codes may vary depending on molecular targets and testing methods. These are updated annually. A reference for physician fee schedules can be found at www.cms.gov.

  11. 11.

    The CPT codes are from 2014 listings and are provided for reference only, not as a billing guide [1]. Recommended codes may vary depending on molecular targets and testing methods. These are updated annually. A reference for physician fee schedules can be found at www.cms.gov.

  12. 12.

    The CPT codes are from 2014 listings and are provided for reference only, not as a billing guide [1]. Recommended codes may vary depending on molecular targets and testing methods. These are updated annually. A reference for physician fee schedules can be found at www.cms.gov.

  13. 13.

    The CPT codes are from 2014 listings and are provided for reference only, not as a billing guide0 [1]. Recommended codes may vary depending on molecular targets and testing methods. These are updated annually. A reference for physician fee schedules can be found at www.cms.gov.

  14. 14.

    The CPT codes are from 2014 listings and are provided for reference only, not as a billing guide [1]. Recommended codes may vary depending on molecular targets and testing methods. These are updated annually. A reference for physician fee schedules can be found at www.cms.gov.

References

  1. Hollman P, editor. Current procedural terminology, CPT, 2014, Professional Edition. 4th ed. Chicago: American Medical Association; 2013. p. 433–516.

    Google Scholar 

  2. Orenstein JM. Ultrastructure of Kaposi sarcoma. Ultrastruct Pathol. 2008;32:211–20.

    Article  PubMed  Google Scholar 

  3. Mesri EA, Cesarman E, Boshoff C. Kaposi’s sarcoma and its associated herpesvirus. Nature reviews. Cancer. 2010;10:707–19.

    CAS  PubMed  Google Scholar 

  4. Hong Y-K, Foreman K, Shin JW, Hirakawa S, Curry CL, Sage DR, et al. Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus. Nat Genet. 2004;36:683–5.

    Article  CAS  PubMed  Google Scholar 

  5. Radu O, Pantanowitz L. Kaposi sarcoma. Arch Pathol Lab Med. 2013;137:289–94.

    Article  CAS  PubMed  Google Scholar 

  6. Robin Y-M, Guillou L, Michels J-J, Coindre J-M. Human herpesvirus 8 immunostaining: a sensitive and specific method for diagnosing Kaposi sarcoma in paraffin-embedded sections. Am J Clin Pathol. 2004;121:330–4.

    Article  PubMed  Google Scholar 

  7. Pantanowitz L, Pinkus GS, Dezube BJ, Tahan SR. HHV8 is not limited to Kaposi’s sarcoma. Mod Pathol. 2005;18:1148; author reply 1149–50.

    Article  PubMed  Google Scholar 

  8. Feng H, Shuda M, Chang Y, Moore PS. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008;319:1096–100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Andres C, Belloni B, Flaig MJ. Value of Merkel cell polyomavirus DNA detection in routine pathology. Am J Dermatopathol. 2011;33:329–30.

    Article  PubMed  Google Scholar 

  10. Andres C, Ihrler S, Puchta U, Flaig MJ. Merkel cell polyomavirus is prevalent in a subset of small cell lung cancer: a study of 31 patients. Thorax. 2009;64:1007–8.

    Article  CAS  PubMed  Google Scholar 

  11. Andres C, Belloni B, Puchta U, Sander CA, Flaig MJ. Prevalence of MCPyV in Merkel cell carcinoma and non-MCC tumors. J Cutan Pathol. 2010;37:28–34.

    Article  PubMed  Google Scholar 

  12. Kassem A, Schöpflin A, Diaz C, Weyers W, Stickeler E, Werner M, et al. Frequent detection of Merkel cell polyomavirus in human Merkel cell carcinomas and identification of a unique deletion in the VP1 gene. Cancer Res. 2008;68:5009–13.

    Article  CAS  PubMed  Google Scholar 

  13. Sastre-Garau X, Peter M, Avril M-F, Laude H, Couturier J, Rozenberg F, et al. Merkel cell carcinoma of the skin: pathological and molecular evidence for a causative role of MCV in oncogenesis. J Pathol. 2009;218:48–56.

    Article  CAS  PubMed  Google Scholar 

  14. Busam KJ, Jungbluth AA, Rekthman N, Coit D, Pulitzer M, Bini J, et al. Merkel cell polyomavirus expression in merkel cell carcinomas and its absence in combined tumors and pulmonary neuroendocrine carcinomas. Am J Surg Pathol. 2009;33:1378–85.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Rübben A, Baron JM, Grussendorf-Conen EI. Routine detection of herpes simplex virus and varicella zoster virus by polymerase chain reaction reveals that initial herpes zoster is frequently misdiagnosed as herpes simplex. Br J Dermatol. 1997;137:259–61.

    Article  PubMed  Google Scholar 

  16. Kakourou T, Theodoridou M, Mostrou G, Syriopoulou V, Papadogeorgaki H, Constantopoulos A. Herpes zoster in children. J Am Acad Dermatol. 1998;39:207–10.

    Article  CAS  PubMed  Google Scholar 

  17. Resnik KS, DiLeonardo M. Herpes incognito. Am J Dermatopathol. 2000;22:144–50.

    Article  CAS  PubMed  Google Scholar 

  18. Espy MJ, Uhl JR, Sloan LM, Buckwalter SP, Jones MF, Vetter EA, et al. Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev. 2006;19:165–256.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Stránská R, Schuurman R, De Vos M, Van Loon AM. Routine use of a highly automated and internally controlled real-time PCR assay for the diagnosis of herpes simplex and varicella-zoster virus infections. J Clin Virol. 2004;30:39–44.

    Article  PubMed  Google Scholar 

  20. Nahass GT, Mandel MJ, Cook S, Fan W, Leonardi CL. Detection of herpes simplex and varicella-zoster infection from cutaneous lesions in different clinical stages with the polymerase chain reaction. J Am Acad Dermatol. 1995;32:730–3.

    Article  CAS  PubMed  Google Scholar 

  21. Giehl KA, Müller-Sander E, Rottenkolber M, Degitz K, Volkenandt M, Berking C. Identification and characterization of 20 immunocompetent patients with simultaneous varicella zoster and herpes simplex virus infection. J Eur Acad Dermatol Venereol. 2008;22:722–8.

    Article  CAS  PubMed  Google Scholar 

  22. Kinonen CL, Gleason BC, Thomas AB, Kaul KL, Cibull TL. Dermal hypersensitivity reaction: a PCR-confirmed pattern of herpetic dermatitis. J Cutan Pathol. 2012;39:929–35.

    Article  PubMed  Google Scholar 

  23. Adelson ME, Feola M, Trama J, Tilton RC, Mordechai E. Simultaneous detection of herpes simplex virus types 1 and 2 by real-time PCR and Pyrosequencing. J Clin Virol. 2005;33:25–34.

    Article  CAS  PubMed  Google Scholar 

  24. Peña KC, Adelson ME, Mordechai E, Blaho JA. Genital herpes simplex virus type 1 in women: detection in cervicovaginal specimens from gynecological practices in the United States. J Clin Microbiol. 2010;48:150–3.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Kano R, Nakamura Y, Watanabe S, Tsujimoto H, Hasegawa A. Identification of Sporothrix schenckii based on sequences of the chitin synthase 1 gene. Mycoses. 2001;44:261–5.

    Article  CAS  PubMed  Google Scholar 

  26. Kanbe T, Natsume L, Goto I, Kawasaki M, Mochizuki T, Ishizaki H, et al. Rapid and specific identification of Sporothrix schenckii by PCR targeting the DNA topoisomerase II gene. J Dermatol Sci. 2005;38:99–106.

    Article  CAS  PubMed  Google Scholar 

  27. Fujii H, Tanioka M, Yonezawa M, Arakawa A, Matsumura Y, Kore-eda S, et al. A case of atypical sporotrichosis with multifocal cutaneous ulcers. Clin Exp Dermatol. 2008;33:135–8.

    Article  CAS  PubMed  Google Scholar 

  28. Saab J, Fedda F, Khattab R, Yahya L, Loya A, Satti M, et al. Cutaneous leishmaniasis mimicking inflammatory and neoplastic processes: a clinical, histopathological and molecular study of 57 cases. J Cutan Pathol. 2012;39:251–62.

    Article  PubMed  Google Scholar 

  29. Kalter DC. Laboratory tests for the diagnosis and evaluation of leishmaniasis. Dermatol Clin. 1994;12:37–50.

    CAS  PubMed  Google Scholar 

  30. Swick BL. Polymerase chain reaction-based molecular diagnosis of cutaneous infections in dermatopathology. Semin Cutan Med Surg. 2012;31:241–6.

    Article  CAS  PubMed  Google Scholar 

  31. Safaei A, Motazedian MH, Vasei M. Polymerase chain reaction for diagnosis of cutaneous leishmaniasis in histologically positive, suspicious and negative skin biopsies. Dermatology. 2002;205:18–24.

    Article  CAS  PubMed  Google Scholar 

  32. Yehia L, Adib-Houreih M, Raslan WF, Kibbi A-G, Loya A, Firooz A, et al. Molecular diagnosis of cutaneous leishmaniasis and species identification: analysis of 122 biopsies with varied parasite index. J Cutan Pathol. 2012;39:347–55.

    Article  PubMed  Google Scholar 

  33. Bensoussan E, Nasereddin A, Jonas F, Schnur LF, Jaffe CL. Comparison of PCR assays for diagnosis of cutaneous leishmaniasis. J Clin Microbiol. 2006;44:1435–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Mahaisavariya P, Chaiprasert A, Manonukul J, Khemngern S, Tingtoy N. Detection and identification of Mycobacterium species by polymerase chain reaction (PCR) from paraffin-embedded tissue compare to AFB staining in pathological sections. J Med Assoc Thai. 2005;88:108–13.

    PubMed  Google Scholar 

  35. Abdalla CMZ, De Oliveira ZNP, Sotto MN, Leite KRM, Canavez FC, De Carvalho CM. Polymerase chain reaction compared to other laboratory findings and to clinical evaluation in the diagnosis of cutaneous tuberculosis and atypical mycobacteria skin infection. Int J Dermatol. 2009;48:27–35.

    Article  CAS  PubMed  Google Scholar 

  36. Truman RW, Singh P, Sharma R, Busso P, Rougemont J, Paniz-Mondolfi A, et al. Probable zoonotic leprosy in the southern United States. N Engl J Med. 2011;364:1626–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Scollard DM, Adams LB, Gillis TP, Krahenbuhl JL, Truman RW, Williams DL. The continuing challenges of leprosy. Clin Microbiol Rev. 2006;19:338–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Hsiao P-F, Tzen C-Y, Chen H-C, Su H-Y. Polymerase chain reaction based detection of Mycobacterium tuberculosis in tissues showing granulomatous inflammation without demonstrable acid-fast bacilli. Int J Dermatol. 2003;42:281–6.

    Article  CAS  PubMed  Google Scholar 

  39. Scollard DM, Gillis TP, Williams DL. Polymerase chain reaction assay for the detection and identification of Mycobacterium leprae in patients in the United States. Am J Clin Pathol. 1998;109:642–6.

    CAS  PubMed  Google Scholar 

  40. Truman RW, Andrews PK, Robbins NY, Adams LB, Krahenbuhl JL, Gillis TP. Enumeration of Mycobacterium leprae using real-time PCR. PLoS Negl Trop Dis. 2008;2:e328.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Lini N, Shankernarayan NP, Dharmalingam K. Quantitative real-time PCR analysis of Mycobacterium leprae DNA and mRNA in human biopsy material from leprosy and reactional cases. J Med Microbiol. 2009;58:753–9.

    Article  CAS  PubMed  Google Scholar 

  42. Phetsuksiri B, Rudeeaneksin J, Supapkul P, Wachapong S, Mahotarn K, Brennan PJ. A simplified reverse transcriptase PCR for rapid detection of Mycobacterium leprae in skin specimens. FEMS Immunol Med Microbiol. 2006;48:319–28.

    Article  CAS  PubMed  Google Scholar 

  43. Khan FA, Khakoo R. Nontuberculous mycobacterial cutaneous infections: an updated review. Cutis. 2011;88:194–200.

    PubMed  Google Scholar 

  44. Bartralot R, García-Patos V, Sitjas D, Rodríguez-Cano L, Mollet J, Martín-Casabona N, et al. Clinical patterns of cutaneous nontuberculous mycobacterial infections. Br J Dermatol. 2005;152:727–34.

    Article  CAS  PubMed  Google Scholar 

  45. Bartralot R, Pujol RM, García-Patos V, Sitjas D, Martín-Casabona N, Coll P, et al. Cutaneous infections due to nontuberculous mycobacteria: histopathological review of 28 cases. Comparative study between lesions observed in immunosuppressed patients and normal hosts. J Cutan Pathol. 2000;27:124–9.

    Article  CAS  PubMed  Google Scholar 

  46. Aldabagh BA, Tomecki KJ. Cutaneous nontuberculous mycobacterial infections. Dermatology Nurs. 2009;21:179–82, 189.

    Google Scholar 

  47. Breathnach A, Levell N, Munro C, Natarajan S, Pedler S. Cutaneous Mycobacterium kansasii infection: case report and review. Clin Infect Dis. 1995;20:812–7.

    Article  CAS  PubMed  Google Scholar 

  48. Chemlal K, Portaels F. Molecular diagnosis of nontuberculous mycobacteria. Curr Opin Infect Dis. 2003;16:77–83.

    Article  CAS  PubMed  Google Scholar 

  49. Schutzer SE, Berger BW, Krueger JG, Eshoo MW, Ecker DJ, Aucott JN. Atypical erythema migrans in patients with PCR-positive Lyme disease. Emerg Infect Dis. 2013;19:815–7.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Heymans R, Van der Helm JJ, De Vries HJC, Fennema HSA, Coutinho RA, Bruisten SM. Clinical value of Treponema pallidum real-time PCR for diagnosis of syphilis. J Clin Microbiol. 2010;48:497–502.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Gayet-Ageron A, Lautenschlager S, Ninet B, Perneger TV, Combescure C. Sensitivity, specificity and likelihood ratios of PCR in the diagnosis of syphilis: a systematic review and meta-analysis. Sex Transm Infect. 2013;89:251–6.

    Article  PubMed  Google Scholar 

  52. Shields M, Guy RJ, Jeoffreys NJ, Finlayson RJ, Donovan B. A longitudinal evaluation of Treponema pallidum PCR testing in early syphilis. BMC Infect Dis. 2012;12:353.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Peng R-R, Yin Y-P, Wei W-H, Wang H-C, Zhang J-P, Chen X-S. PCR detection in diagnosis of early syphilis: a preliminary result from China. Sex Transm Infect. 2013;89:230.

    Article  PubMed  Google Scholar 

  54. Liu H, Rodes B, Chen CY, Steiner B. New tests for syphilis: rational design of a PCR method for detection of Treponema pallidum in clinical specimens using unique regions of the DNA polymerase I gene. J Clin Microbiol. 2001;39:1941–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Chen C-Y, Pillay A. Protocol for the detection of Treponema pallidum in paraffin-embedded specimens. Methods Mol Biol. 2012;903:295–306.

    Article  CAS  PubMed  Google Scholar 

  56. Mehmi M, Lim SPR, Tan CY. An unusual cutaneous presentation of cat-scratch disease. Clin Exp Dermatol. 2007;32:219–20.

    Article  CAS  PubMed  Google Scholar 

  57. Klotz SA, Ianas V, Elliott SP. Cat-scratch disease. Am Fam Physician. 2011;83:152–5.

    PubMed  Google Scholar 

  58. Moulin C, Kanitakis J, Ranchin B, Chauvet C, Gillet Y, Morelon E, et al. Cutaneous bacillary angiomatosis in renal transplant recipients: report of three new cases and literature review. Transpl Infect Dis. 2012;14:403–9.

    Article  CAS  PubMed  Google Scholar 

  59. Angelakis E, Edouard S, La Scola B, Raoult D. Bartonella henselae in skin biopsy specimens of patients with cat-scratch disease. Emerg Infect Dis. 2010;16:1963–5.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Tatti KM, Greer P, White E, Shieh W-J, Guarner J, Ferebee-Harris T, et al. Morphologic, immunologic, and molecular methods to detect bacillus anthracis in formalin-fixed tissues. Appl Immunohistochem Mol Morphol. 2006;14:234–43.

    Article  PubMed  Google Scholar 

  61. Shlyakhov E, Rubinstein E. Evaluation of the anthraxin skin test for diagnosis of acute and past human anthrax. Eur J Clin Microbiol Infect Dis. 1996;15:242–5.

    Article  CAS  PubMed  Google Scholar 

  62. Lee MA, Brightwell G, Leslie D, Bird H, Hamilton A. Fluorescent detection techniques for real-time multiplex strand specific detection of Bacillus anthracis using rapid PCR. J Appl Microbiol. 1999;87:218–23.

    Article  CAS  PubMed  Google Scholar 

  63. Ramisse V, Patra G, Garrigue H, Guesdon JL, Mock M. Identification and characterization of Bacillus anthracis by multiplex PCR analysis of sequences on plasmids pXO1 and pXO2 and chromosomal DNA. FEMS Microbiol Lett. 1996;145:9–16.

    Article  CAS  PubMed  Google Scholar 

  64. Ramisse V, Patra G, Vaissaire J, Mock M. The Ba813 chromosomal DNA sequence effectively traces the whole Bacillus anthracis community. J Appl Microbiol. 1999;87:224–8.

    Article  CAS  PubMed  Google Scholar 

  65. Jackson PJ, Hugh-Jones ME, Adair DM, Green G, Hill KK, Kuske CR, et al. PCR analysis of tissue samples from the 1979 Sverdlovsk anthrax victims: the presence of multiple Bacillus anthracis strains in different victims. Proc Natl Acad Sci U S A. 1998;95:1224–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Qi Y, Patra G, Liang X, Williams LE, Rose S, Redkar RJ, et al. Utilization of the rpoB gene as a specific chromosomal marker for real-time PCR detection of Bacillus anthracis. Appl Environ Microbiol. 2001;67:3720–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Patra G, Williams LE, Qi Y, Rose S, Redkar R, Delvecchio VG. Rapid genotyping of Bacillus anthracis strains by real-time polymerase chain reaction. Ann N Y Acad Sci. 2002;969:106–11.

    Article  CAS  PubMed  Google Scholar 

  68. Hoffmaster AR, Meyer RF, Bowen MD, Marston CK, Weyant RS, Thurman K, et al. Evaluation and validation of a real-time polymerase chain reaction assay for rapid identification of Bacillus anthracis. Emerg Infect Dis. 2002;8:1178–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Jernigan DB, Raghunathan PL, Bell BP, Brechner R, Bresnitz EA, Butler JC, et al. Investigation of bioterrorism-related anthrax, United States, 2001: epidemiologic findings. Emerg Infect Dis. 2002;8:1019–28.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Jernigan JA, Titus MG, Gröschel DH, Getchell-White S, Farr BM. Effectiveness of contact isolation during a hospital outbreak of methicillin-resistant Staphylococcus aureus. Am J Epidemiol. 1996;143:496–504.

    Article  CAS  PubMed  Google Scholar 

  71. Chaix C, Durand-Zaleski I, Alberti C, Brun-Buisson C. Control of endemic methicillin-resistant Staphylococcus aureus: a cost-benefit analysis in an intensive care unit. JAMA. 1999;282:1745–51.

    Article  CAS  PubMed  Google Scholar 

  72. Robicsek A, Beaumont JL, Paule SM, Hacek DM, Thomson RB, Kaul KL, et al. Universal surveillance for methicillin-resistant Staphylococcus aureus in 3 affiliated hospitals. Ann Intern Med. 2008;148:409–18.

    Article  PubMed  Google Scholar 

  73. Donnio P-Y, Oliveira DC, Faria NA, Wilhelm N, Le Coustumier A, De Lencastre H. Partial excision of the chromosomal cassette containing the methicillin resistance determinant results in methicillin-susceptible Staphylococcus aureus. J Clin Microbiol. 2005;43:4191–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Francois P, Bento M, Renzi G, Harbarth S, Pittet D, Schrenzel J. Evaluation of three molecular assays for rapid identification of methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 2007;45:2011–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Wolk DM, Struelens MJ, Pancholi P, Davis T, Della-Latta P, Fuller D, et al. Rapid detection of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) in wound specimens and blood cultures: multicenter preclinical evaluation of the Cepheid Xpert MRSA/SA skin and soft tissue and blood culture assays. J Clin Microbiol. 2009;47:823–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Qu H-Q, Fisher-Hoch SP, McCormick JB. Molecular immunity to mycobacteria: knowledge from the mutation and phenotype spectrum analysis of Mendelian susceptibility to mycobacterial diseases. Int J Infect Dis. 2011;15:e305–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Zhang F-R, Huang W, Chen S-M, Sun L-D, Liu H, Li Y, et al. Genomewide association study of leprosy. N Engl J Med. 2009;361:2609–18.

    Article  CAS  PubMed  Google Scholar 

  78. Sardinha JFJ, Tarlé RG, Fava VM, Francio AS, Ramos GB, de Lima Ferreira LC, et al. Genetic risk factors for human susceptibility to infections of relevance in dermatology. An Bras Dermatol. 2011;86:708–15.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hosler, G.A., Murphy, K.M. (2014). Infectious Disease Testing. In: Molecular Diagnostics for Dermatology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54066-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54066-0_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54065-3

  • Online ISBN: 978-3-642-54066-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics