Strongly Porous Materials and Surface Structures

Part of the Springer Series in Surface Sciences book series (SSSUR, volume 54)


Examples of subwavelength structures such as periodic or stochastic motheye structures and porous silicon dioxide are discussed with respect to spectrally broadband and angle tolerant antireflection tasks. Application concern transmissive optics as well as absorber designs.


Antireflection Coating Refractive Index Profile Black Silicon Subwavelength Structure Incident Light Wavelength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C. Brückner, B. Pradarutti, O. Stenzel, R. Steinkopf, S. Riehemann, G. Notni, A. Tünnermann, Broadband antireflective surface-relief structure for THz optics. Opt. Express 15, 779–789 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    P.B. Clapham, M.C. Hutley, Reduction of lens reflexion by the “moth eye” principle. Nature 244, 281–282 (1973)ADSCrossRefGoogle Scholar
  3. 3.
    R. Brunner, B. Keil, C. Morhard, D. Lehr, J. Draheim, U. Wallrabe, J. Spatz, Antireflective “moth-eye” structures on tunable optical silicone membranes. Appl. Opt. 51, 4370–4376 (2012)CrossRefGoogle Scholar
  4. 4.
    Fv Hulst, P. Geelen, A. Gebhardt, R. Steinkopf, Diamond tools for producing micro-optic elements. Ind. Diamond Rev. 3, 58–62 (2005)Google Scholar
  5. 5.
    A. Kaless, U. Schulz, P. Munzert, N. Kaiser, NANO-motheye antireflection pattern by plasma treatment of polymers. Surf. Coat. Tech. 200, 58–61 (2005)CrossRefGoogle Scholar
  6. 6.
    R. Leitel, J. Petschulat, A. Kaless, U. Schulz, O. Stenzel, N. Kaiser, Optical properties of stochastic subwavelength surface structures, in Proceedings of SPIE, vol. 5965 (2005), pp. 59651O-1–59651O-10 Google Scholar
  7. 7.
    J. Petschulat, Herstellung, Charakterisierung und theoretische behandlung von metallbeschichteten mottenaugenstrukturen, Friedrich-Schiller-Universität Jena/Fraunhofer IOF, diploma thesis (2005)Google Scholar
  8. 8.
    O. Stenzel, U. Schulz, N. Kaiser, Tailoring optical and non-optical properties of interference coating materials through the explicit use of small-scale optical inhomogeneities. Adv. Opt. Technol. 1, 79–89 (2012)ADSGoogle Scholar
  9. 9.
    J.A. Dobrowolski, A.V. Tikhonravov, M.K. Trubetskov, Brian T. Sullivan, P.G. Verly, Optimal single-band normal-incidence antireflection coatings. Appl. Opt. 35, 644–658 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    U. Schulz, Wideband antireflection coatings by combining interference multilayers with structured top layers. Opt. Express 17, 8704–8708 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    A.V. Tikhonravov, M.K. Trubetskov, T.V. Amotchkina, M.A. Kokarev, N. Kaiser, O. Stenzel, S. Wilbrandt, D. Gäbler, New optimization algorithm for the synthesis of rugate optical coatings. Appl. Opt. 45, 1515–1524 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    R.W. Klopfenstein, A transmission line taper of improved design, in Proceedings of the IRE (1956), pp. 31–35Google Scholar
  13. 13.
    E.B. Grann, M.G. Moharam, D.A. Pommet, Optimal design for antireflective tapered two-dimensional subwavelength grating structures. J. Opt. Soc. Am. A 12, 333–339 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    S.R. Kennedy, M.J. Brett, Porous broadband antireflection coating by glancing angle deposition. Appl. Opt. 42, 4573–4579 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    J.A. Dobrowolski, Antireflection coatings: key optical components, in Proceedings of SPIE, vol. 5963 (2005), pp. 596303-1–596303-12Google Scholar
  16. 16.
    G. Kalkowski, O. Stenzel, W. Stöckl, Electrostatic chuck, e.g. for use in lithographic process of silicon, has transparent cover, and silicon oxide and/or aluminum oxide film applied on portion of chromium oxide film applied on base layer comprising metal applied on substrate, Patent Number(s): US2009279101–A1,DE102008022792–A1,US8081317–B2 (2009)Google Scholar
  17. 17.
    R.J.C. Brown, P.J. Brewer, M.J.T. Milton, The physical and chemical properties of electroless nickel phosphorus alloys and low reflectance nickel phosphorus black surfaces. J. Mater. Chem. 12, 2749–2754 (2002)CrossRefGoogle Scholar
  18. 18.
    H. Jansen, W. de Boer, B. Oiler, W. Elwenspoek, The black silicon method IV: the fabrication of three dimensional structuresin silicon with high aspect ratios for scanning probe microscopy and other applications (IEEE 1995), pp. 88–93Google Scholar
  19. 19.
    S. Koynov, M.S. Brandt, M. Stutzmann, Black nonreflecting silicon surfaces for solar cells, Appl. Phys. Lett. 88, 203107-1–203107-1 (2006)Google Scholar
  20. 20.
    K. Füchsel, M. Kroll, T. Käsebier, M. Otto, T. Pertsch, E.-B. Kley, R.B. Wehrspohn, N. Kaiser, A. Tünnermann, Black silicon photovoltaics, in Proceedings of SPIE, vol. 8438 (2012), pp. 84380M-1–84380M-8Google Scholar
  21. 21.
    I.M. Thomas, High laser damage threshold porous silicon dioxide antireflective coating. Appl. Opt. 25, 1481–1483 (1986)ADSCrossRefGoogle Scholar
  22. 22.
    H. Nagel, A.G. Aberle, R. Hezel, Optimised antireflection coatings for planar silicon solar cells using remote PECVD silicon nitride and porous silicon dioxide. Prog. Photovoltaics Res. Appl. 7, 245–260 (1999)CrossRefGoogle Scholar
  23. 23.
    J.-Q. Xi, M.F. Schubert, J. Kyu Kim, E.F. Schubert, M. Chen, S. Lin, W. Liu, J.A. Smart, Optical thin-film materials with low refractive index for broadband elimination of fresnel reflection. Nat. Photonics 1, 176–179 (2007)ADSGoogle Scholar
  24. 24.
    M.F. Schubert, F.W. Mont, S. Chhajed, D.J. Poxson, J.K. Kim, E.F. Schubert, Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm. Opt. Express 16, 5290–5298 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    B.E. Yoldas, Investigations of porous oxides as an antireflective coating for glass surfaces. Appl. Opt. 19, 1425–1429 (1980)ADSCrossRefGoogle Scholar
  26. 26.
    D. Zhao, P. Yang, N. Melosh, J. Feng, B.F. Chmelka, G.D. Stucky, Continuous mesoporous silicon dioxide films with highly ordered large pore structures. Adv. Mater. 10, 1380–1385 (1998)CrossRefGoogle Scholar
  27. 27.
    S. Matsuno, N. Sakamoto, T. Akaogi, H. Shirataki, I. Doi, Characterization of Nano-structures of porous silicon dioxide thin films by crazing incidence X-ray scattering method. Xsen Bunseki Toronkai Koen Yoshishu 39, 3–6 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Fraunhofer Institute IOFJenaGermany

Personalised recommendations