Advertisement

Molecular Imaging and Tumoral Antigen Targeting

  • Cristina NanniEmail author
  • Stefano Fanti
Chapter
Part of the Medical Radiology book series (MEDRAD)

Abstract

In vivo molecular imaging includes a range of techniques that are aimed at macroscopically and in vivo visualising molecular events at a cellular level.
  • Small animal positron emission tomography (SA-PET), small animal single-photon emission tomography (SA-SPECT), small animal magnetic resonance imaging and optical imaging are the most interesting and are based on the use of targeted probes binding to specific molecules (receptors or ligands) or those that are included in specific metabolic processes.

  • Those techniques are very expensive but meet a wider and wider employment since they have the advantage of analysing the same subject over time.

  • The application of those preclinical imaging techniques for the basic study of kidney diseases is still an emerging field. This chapter will approach the use of preclinical molecular imaging and tumoral antigen targeting in kidney diseases.

Keywords

Renal Cell Carcinoma Molecular Imaging Epithelial Growth Factor Receptor Renal Clear Cell Carcinoma Small Animal Positron Emission Tomography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Artemov D et al (2003) Molecular magnetic resonance imaging with targeted contrast agents. J Cell Biochem 90:518–524PubMedCrossRefGoogle Scholar
  2. Bhaumik S, Gambhir SS (2002) Optical imaging of renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci U S A 99(1):377–382PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bult W et al (2013) Intratumoral administration of holmium-166 acetylacetonate microspheres: antitumor efficacy and feasibility of multimodality imaging in renal cancer. PLoS One 8(1):e52178. doi: 10.1371/journal.pone.0052178, Epub 2013 Jan 8PubMedCrossRefPubMedCentralGoogle Scholar
  4. Chatziioannou AF (2005) Instrumentation for molecular imaging in preclinical research micro-PET and micro-SPECT. Proc Am Thorac Soc 2(6):533–536, 510–511PubMedCrossRefPubMedCentralGoogle Scholar
  5. Frank JA et al (2004) Methods for magnetically labeling stem and other cells for detection by in vivo magnetic resonance imaging. Cytotherapy 6:621–625PubMedCrossRefGoogle Scholar
  6. Fueger BJ, Czernin J, Hildebrandt I et al (2006) Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med 47(6):999–1006PubMedGoogle Scholar
  7. Hauger O, Frost EE, van Heeswijk R, Deminière C, Xue R, Delmas Y, Combe C, Moonen CT, Grenier N, Bulte JW (2006) MR evaluation of the glomerular homing of magnetically labeled mesenchymal stem cells in a rat model of nephropathy. Radiology 238(1):200–210PubMedCrossRefGoogle Scholar
  8. Hengerer A, Grimm J (2005) Molecular magnetic resonance imaging. Med Solut Spec Ed 2:31–38Google Scholar
  9. Herschman HR (2003) Micro-PET imaging and small animal models of disease. Curr Opin Immunol 15:378–384PubMedCrossRefGoogle Scholar
  10. Lange C, Tögel F, Ittrich H, Clayton F, Nolte-Ernsting C, Zander AR, Westenfelder C (2005) Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats. Kidney Int 68(4):1613–1617PubMedCrossRefGoogle Scholar
  11. Levin CS (2005) Primer on molecular imaging technology. Eur J of Nucl Med Mol Imaging 32(14):S325CrossRefGoogle Scholar
  12. Mahmood U, Weissleder R (2003) Near-infrared optical imaging of proteases in cancer. Mol Cancer Ther 2:489–496PubMedGoogle Scholar
  13. Myers R, Hume S (2002) Small animal PET. Eur Neuropsychopharmacol 12:545–555PubMedCrossRefGoogle Scholar
  14. Nanni C, Di Leo K, Tonelli R et al (2007) FDG small animal PET permits early detection of malignant cells in a xenograft murine model. Eur J Nucl Med Mol Imaging 34(5):755–762, Epub 2006 Dec 8PubMedCrossRefGoogle Scholar
  15. Nikolaus S, Larisch R, Wirrwar A et al (2005) [123I]Iodobenzamide binding to the rat dopamine D2 receptor in competition with haloperidol and endogenous dopamine—an in vivo imaging study with a dedicated small animal SPECT. Eur J Nucl Med Mol Imaging 32:1305–1310PubMedCrossRefGoogle Scholar
  16. Sadikot RT, Blackwell TS (2005) Bioluminescence imaging. Proc Am Thorac Soc 2:537–540PubMedCrossRefPubMedCentralGoogle Scholar
  17. Schnöckel U, Reuter S, Stegger L, Schlatter E, Schäfers KP, Hermann S, Schober O, Gabriëls G, Schäfers M (2008) Dynamic (18)F-fluoride small animal PET to noninvasively assess renal function in rats. Eur J Nucl Med Mol Imaging 35:2267–74PubMedCrossRefGoogle Scholar
  18. Schwaiger M, Ziegler SI, Nekolla SG (2005) MR-PET: combining function, anatomy and more. Med Solutions Spec Ed 25–30Google Scholar
  19. Scott K (2005) Lyons advances in imaging mouse tumour models in vivo. J Pathol 205:194–205CrossRefGoogle Scholar
  20. Sossi V, Ruth TJ (2005) Micropet imaging: in vivo biochemistry in small animals. J Neural Transm 112:319–330PubMedCrossRefGoogle Scholar
  21. Walrand S, Jamar F, de Jong M, Pauwels S (2005) Evaluation of novel whole-body high- resolution rodent SPECT (linoview) based on direct acquisition of linogram projections. J Nucl Med 46(11):1872–1880PubMedGoogle Scholar
  22. Weber S, Bauer A (2004) Small animal PET: aspects of performance assessment. Eur J Nucl Med Mol Imaging 31(11):1545PubMedCrossRefGoogle Scholar
  23. Yaghoubi SS, Gambhir SS (2006) PET imaging of herpes simplex virus type 1 thymidine kinase (HSV1-tk) or mutant HSV1-sr39tk reporter gene expression in mice and humans using [18F]FHBG. Nat Protoc 1(6):3069–3075PubMedCrossRefGoogle Scholar
  24. Zhang Y, Saylor M, Wen et al (2006) Longitudinally quantitative 2-deoxy-2-[18F]fluoro-D-glucose micro positron emission tomography imaging for efficacy of new anticancer drugs: a case study with bortezomib in prostate cancer murine model. Mol Imaging Biol 8(5):300–308PubMedCrossRefGoogle Scholar
  25. Zisman A, Pantuck AJ, Bui MH, Said JW, Caliliw RR, Rao N, Shintaku P, Berger F, Gambhir SS, Belldegrun AS (2003) LABAZ1: a metastatic tumor model for renal cell carcinoma expressing the carbonic anhydrase type 9 tumor antigen. Cancer Res 63(16):4952–4959PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.UO Medicina NucleareAzienda Ospedaliero-Universitaria di Bologna Policlinico S. Orsola-MalpighiBolognaItaly
  2. 2.Nuclear Medicine DepartmentS.Orsola-Malpighi HospitalBolognaItaly

Personalised recommendations