Skip to main content

Normal Radiological Anatomy and Anatomical Variants of the Kidney

  • Chapter
  • First Online:
Radiological Imaging of the Kidney

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

The kidneys are highly vascularized organs. Each kidney receives the highest blood flow per gram of organ weight in the body (1.2 L/min corresponding to 20 % of the cardiac output and a perfusion value of 400 mL/min/100 g). The most employed indicator of the renal function is the glomerular filtration rate (GFR), which can be estimated according to different formulas. The calculation of the GFR is essential for a correct employment of iodinated and gadolinium-based contrast agents. The most widely used equations for estimating GFR are the Cockcroft–Gault and the Modification of Diet in Renal Disease Study Group (MDRD) formulas.

The modern radiological imaging techniques allow a detailed depiction of the renal anatomy and of the anatomical variants. Ultrasound, computed tomography, and magnetic resonance imaging define accurately the anatomy and anatomical variants of the renal parenchyma, arteries, and intrarenal urinary tract.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amis ES Jr (1999) Epitaph for the urogram. Radiology 213:639–640

    Article  PubMed  Google Scholar 

  • Andreoli TE (1992) Approach to the patient with renal disease. In: Wyngaarden JB, Smith LH, Bennett JC (eds) Cecil textbook of medicine. Saunders, Philadelphia, pp 477–482

    Google Scholar 

  • Barakat AJ, Drougas JG (1991) Occurrence of congenital abnormalities of kidney and urinary tract in 13775 autopsies. Urology 38:347–350

    Article  PubMed  CAS  Google Scholar 

  • Baxter JD (1992) Regulation of adrenal steroid production. In: Wyngaarden JB, Smith LH, Bennett JC (eds) Cecil textbook of medicine. Saunders, Philadelphia, pp 1275–1277

    Google Scholar 

  • Behrman RE, Kliegman RM, Arvin AM (1996) Nelson textbook of pediatrics, 15th edn. WB Saunders, Philadelphia

    Google Scholar 

  • Bude RO, Rubin JM (1995) Detection of renal artery stenosis with Doppler sonography: it is more complicated than originally thought (editorial). Radiology 196:612–613

    Article  PubMed  CAS  Google Scholar 

  • Bude RO, Rubin JM, Adler RS (1994) Power versus conventional color Doppler sonography: comparison in the depiction of normal intrarenal vasculature. Radiology 192(3):777–780

    Article  PubMed  CAS  Google Scholar 

  • Buschi AJ, Harrison RB, Norman A et al (1980) Distended left renal vein: CT/sonographic normal variant. AJR Am J Roentgenol 135:339–342

    Article  PubMed  CAS  Google Scholar 

  • Chiara A, Chirico G, Comelli L et al (1990) Increased renal echogenicity in the neonate. Early Hum Dev 22:29–37

    Article  PubMed  CAS  Google Scholar 

  • Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16(1):31–41

    Article  PubMed  CAS  Google Scholar 

  • Cohen AJ (1991) Use of diuretics in the intensive care units. In: Rippe JM, Irwin RS et al (eds) Intensive care medicine. Little, Brown and Company, Boston, pp 733–742

    Google Scholar 

  • Correas JM, Helenon O, Moreau JF (1999) Contrast enhanced ultrasonography of native and transplant kidney diseases. Eur Radiol 9(suppl 3):394–400

    Article  Google Scholar 

  • Cuttino JT Jr, Clark RL, Jennette JC (1989) Microradiographic demonstration of human intrarenal microlymphatic pathways. Urol Radiol 11:83–87

    Article  PubMed  Google Scholar 

  • Dagher PR, Herget-Rosenthal S, Ruehm SG et al (2003) Newly developed techniques to study and diagnose acute renal failure. J Am Soc Nephrol 14:2188–2198

    Article  PubMed  Google Scholar 

  • Davidson C, Stacul F, McCullough PA et al (2006) Contrast medium use. Am J Cardiol 98(suppl):42K–58K

    Article  PubMed  CAS  Google Scholar 

  • Desberg AL, Paushter DM, Lammert GK et al (1990) Renal artery stenosis: evaluation with color Doppler flow imaging. Radiology 177:749–753

    Article  PubMed  CAS  Google Scholar 

  • Fanney DR, Casillas J, Murphy BJ (1990) CT in the diagnosis of renal trauma. Radiographics 10:29–40

    Article  PubMed  CAS  Google Scholar 

  • Federle MP, Guliani-Chabra S, Venkata SA (2004) Renal ectopia. In: Federle MP (ed) Diagnostic imaging abdomen. Amirys, Salt Lake City, pp 6–7

    Google Scholar 

  • Federle MP et al (2006) Embryology of the abdomen. In: Federle MP, Rosado-de-Christenson ML, Woodward PJ (eds) Diagnostic and surgical imaging anatomy. Chest, abdomen, pelvis. Amirsys, Altona, pp 446–483

    Google Scholar 

  • Friedenberg RM, Dunbar JS (1990) Excretory urography. In: Pollack HM (ed) Clinical urography. Saunders, Philadelphia, pp 101–243

    Google Scholar 

  • Gourtsoyiannis N, Prassopoulos P, Cavouras D, Pantelidis N (1990) The thickness of the renal parenchyma decreases with age: a CT study of 360 patients. AJR Am J Roentgenol 155:541–544

    Article  PubMed  CAS  Google Scholar 

  • Grant EG, Melany ML (2001) Ultrasound contrast agents in the evaluation of the renal arteries. In: Goldberg BB, Raichlen JS, Forsberg F (eds) Ultrasound contrast agents. Basic principles and clinical applications, 2nd edn. Martin Dunitz, London, pp 289–295

    Google Scholar 

  • Grist TM (2000) MRA of the abdominal aorta and lower extremities. J Magn Reson Imaging 11:32–43

    Article  PubMed  CAS  Google Scholar 

  • Helenon O, Rody EL, Correas JM et al (1995) Color Doppler US of renovascular disease in native kidneys. Radiographics 15:833–854

    Article  PubMed  CAS  Google Scholar 

  • Hogg CM, Reid O, Scothorne RJ (1982) Studies on hemolymph nodes. III. Renal lymph as a major source of erythrocytes in the renal hemolymph node of the rat. J Anat 135:291–299

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hricak H, Slovis TL, Callen CW et al (1983) Neonatal kidneys: sonographic anatomic correlation. Radiology 147:699

    Article  PubMed  CAS  Google Scholar 

  • Ischikawa Y, Akasaka Y, Kiguchi H et al (2006) The human renal lymphatics under normal and pathological conditions. Histopathology 49(3):265–273

    Article  Google Scholar 

  • Joffe SA, Servaes S, Okon S et al (2003) Multi-detector row CT urography in the evaluation of hematuria. Radiographics 23:1441–1455

    Article  PubMed  Google Scholar 

  • Karazincir S, Balci A, Gorur S et al (2007) Incidence of the retroaortic left renal vein in patients with varicocele. J Ultrasound Med 26:601–604

    PubMed  Google Scholar 

  • Kasap B, Soylu A, TĂĽrkmen M et al (2006) Relationship of increased renal cortical echogenicity with clinical and laboratory findings in pediatric renal disease. J Clin Ultrasound 34:339–342

    Article  PubMed  Google Scholar 

  • Klahr S (1992) Structure and function of the kidneys. In: Wyngaarden JB, Smith LH, Bennett JC (eds) Cecil textbook of medicine. Saunders, Philadelphia, pp 482–492

    Google Scholar 

  • Laiken ND, Fanestil DD (1985) Anatomy of the kidneys. In: West JB (ed) Best and Taylor’s physiology basis of medical practice. Williams & Wilkins, Baltimore, pp 451–460

    Google Scholar 

  • Lameire N, Adam A, Becker CR et al (2006) Baseline renal function screening. Am J Cardiol 98(suppl):21K–26K

    Article  PubMed  Google Scholar 

  • Lane BR, Poggio ED, Herts BR et al (2009) Renal function assessment in the era of chronic kidney disease: renewed emphasis on renal function centered patient care. J Urol 182(2):435–443

    Article  PubMed  Google Scholar 

  • Levey AS, Bosch JP, Lewis JB et al (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of diet in Renal Disease Study Group. Ann Intern Med 130(6):461–470

    Article  PubMed  CAS  Google Scholar 

  • Levey AS, Stevens LA, Schmid CH et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahony BS, Filly RA, Callen PW, Hricak H, Golbus MS, Harrison MR (1984) Fetal renal dysplasia: sonographic evaluation. Radiology; 152(1):143–146

    Google Scholar 

  • National Kidney Foundation (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39(suppl 1):S1–S266

    Google Scholar 

  • Nino-Murcia M, de Vries PA, Friedland GW (2000) Congenital anomalies of the kidney. In: Pollack HM, Mc Clennan BL (eds) Clinical urography. Saunders, Philadelphia, pp 690–763

    Google Scholar 

  • Olbricht C, Mason J, Takabatake T et al (1977) The early phase of experimental acute renal failure II. Tubular leakage and the reliability of glomerular markers. Pflugers Arch 372:251–258

    Article  PubMed  CAS  Google Scholar 

  • Peipert JF, Donnenfeld AE (1991) Oligohydramnios: a review. Obstet Gynecol Surv 46(6):325–339

    Article  PubMed  CAS  Google Scholar 

  • Reed MD, Friedman AC, Nealey P (1982) Anomalies of the left renal vein: analysis of 433 CT scans. J Comput Assist Tomogr 6:1124–1126

    Article  PubMed  CAS  Google Scholar 

  • Rule AD, Larson TS, Bergstralh EJ et al (2004) Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease. Ann Intern Med 141:929–937

    Article  PubMed  CAS  Google Scholar 

  • Satyapal KS, Haffejee AA, Singh B et al (2001) Additional renal arteries: incidence and morphometry. Surg Radiol Anat 23(1):33–38

    Article  PubMed  CAS  Google Scholar 

  • Schedl A (2007) Renal abnormalities and their developmental origin. Nat Rev Genet 8(10):791–802

    Article  PubMed  CAS  Google Scholar 

  • Schwartz GJ, Feld LG, Langford DJ (1984) A simple estimate of glomerular filtration rate in full-term infants during the first year of life. J Pediatr 104(6):849–854

    Article  PubMed  CAS  Google Scholar 

  • Silverman SG, Leyendecker JR, Amis SE (2009) What is the current role of CT urography and MR urography in the evaluation of the urinary tract. Radiology 250:309–323

    Article  PubMed  Google Scholar 

  • Stevens LA, Levey AS (2005) Chronic kidney disease in the elderly – how to assess risk. N Engl J Med 352:2122–2124

    Article  PubMed  CAS  Google Scholar 

  • Stevens LA, Coresh J, Greene T et al (2006) Assessing kidney function – measured and estimated glomerular filtration rate. N Engl J Med 354:2473–2483

    Article  PubMed  CAS  Google Scholar 

  • TĂĽrkvatan A, Ă–zdemir M, Cumhur T et al (2009) Multidetector CT angiography of renal vasculature: normal anatomy and variants. Eur Radiol 19(1):236–244. doi:10.1007/s00330-008-1126-3

    Article  PubMed  Google Scholar 

  • Twining P (1994) Genitourinary malformations. In: Nyberg AD, McGahan JP, Pretorius DH, Pilu G (eds) Diagnostic imaging of fetal anomalies. Lippincott Williams and Wilkins, Philadelphia, pp 603–659

    Google Scholar 

  • Van Der Molen AJ, Cowan NJ, Mueller-Lisse UG et al (2008) CT urography: definition, indications and techniques. A guideline for clinical practice. Eur Radiol 18:4–17

    Article  Google Scholar 

  • Yeh HS, Halton KP, Shapiro RS et al (1992) Junctional parenchyma: revised definition of the hypertrophic column of Bertin. Radiology 185:725–732

    Article  PubMed  CAS  Google Scholar 

  • Yeh BM, Coakley FV, Meng MV et al (2004) Precaval right renal arteries: prevalence and morphologic associations at spiral CT. Radiology 230:429–433

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Quaia .

Editor information

Editors and Affiliations

Appendix: Basic Morphological Changes of the Intrarenal Urinary Tract Visible on Intravenous Excretory Urography and Multidetector CT Urography

Appendix: Basic Morphological Changes of the Intrarenal Urinary Tract Visible on Intravenous Excretory Urography and Multidetector CT Urography

The anatomical variants of the normal renal urinary tract (see Fig. 58) must be differentiated from the pathologic morphological changes visible on renal calyces, infundibula, and renal pelvis on intravenous excretory urography, multidetector computed tomography urography (CTU), or MR urography due to specific renal pathologies.

Fig. 58
figure 58

(a–c) Normal intrarenal urinary tract. (a) Scheme with the evidence of the ideal line (Hodson’s line) connecting the apex of the renal papillae; (b) intravenous excretory urography; (c) multidetector computed tomography urography (CTU)

Essentially, two fundamental pathologic morphological changes of the renal calices may be identified by intravenous excretory urography or multidetector CTU corresponding to plus (contrast agent projecting outside the renal calyx profile) and minus (contrast filling defects within the renal calyx or pelvis profile) images. To identify the fundamental alterations of the renal urinary tract, and particularly of the renal calyces, it is useful to consider an ideal interpapillary line connecting the apex of the renal papillae (Hodson’s line). Plus images include calyceal deformities and cavitations (Fig. 59), calyceal deformities due to parenchymal scarring (Fig. 60), urinary tract dilatation (Fig. 61), and calyceal deformities due to papillary atrophy (Fig. 62).

Fig. 59
figure 59

(a–h) Appearances of plus images of the renal calyces manifesting as calyceal deformities or cavitations. (a) Scheme with the evidence of the ideal line connecting the apex of the renal papillae – Hodson’s line: (1) renal medullary necrosis; (2–3) renal papillary necrosis from initial detachment of necrotic papillae to the triangular filling defect due to the sloughing of the necrotic papilla; (4) calyceal deformity and clubbing due to parenchymal scarring in chronic renal infection; (5) calyceal deformity with convexity of the calyceal profile in initial renal hydronephrosis; (6) calyceal ulceration; (7) cavitation; (8) hydrocalyx. (b) Intravenous excretory urography. Calyceal diverticulum (arrow) connects to the calyceal fornix and projecting into the renal cortex. (c, d) Intravenous excretory urography (c) and CT urography (d). Renal medullary necrosis at the tip of the papilla appearing as microcavities (arrows) surrounded by the papilla fornices. (e, f) Intravenous excretory urography (e) and CT urography (f). Renal papillary necrosis (arrow) with blunted calyx and preservation of the renal profile. On image (f) there is also evidence of hypodense blood coagula at the level of the pyeloureteral junction. (g) Intravenous excretory urography. Ulcerations (arrows) of the upper renal calyces due to renal tuberculosis. (h) Intravenous excretory urography. Hydrocalycosis (arrow) due to tubercular infundibular stenosis

Fig. 60
figure 60

(a–d) Appearances of plus images manifesting as pelvis, or calyceal deformities. (a) Scheme with the evidence of the ideal line representing the normal renal profile. Calyceal deformities due to reflux nephropathy with cortical loss over dilated deformed calyx with a calviform shape. (b, c) Intravenous excretory urography. Reflux nephropathy with typical calyceal deformities (arrowheads) and alteration of the renal profile. (d) CT urography. Reflux nephropathy with clubbing deformation of the renal calyces and parenchymal scarring with alteration of the renal profile (large arrow). A solid renal tumor (small arrow) is also identified on the lower renal pole

Fig. 61
figure 61

(a–e) Appearances of plus images due to dilatation of the urinary tract. (a) Scheme with the evidence of the ideal line connecting the external renal calyx profiles: (1) normal calyx; (2–3) reflux nephropathy; (4–5) hydronephrosis; (6–7) sponge kidney with linear striations (6) and small round contrast collections (7). (b) Intravenous excretory urography. Hydronephrosis of the left urinary tract. (c) CTU. Hydronephrosis of the right urinary tract. (d) Intravenous excretory urography. Medullary sponge kidney with the evidence of linear striations and small round contrast collections (arrows). (e) CT urography. Medullary sponge kidney. Linear striations at the level of renal papillae (arrows)

Fig. 62
figure 62

(a, b) Appearances of plus images manifesting as calyceal deformities due to papillary atrophy. (a) Scheme with the evidence of the ideal line representing the normal renal parenchyma profile; (b) intravenous excretory urography. Papillary atrophy with the absence of the normal concave calyceal profile and the evidence of convex calyceal profile (arrow) due to benign prostatic hypertrophy

Minus images include calyceal defects or amputations (Fig. 63), changes of the infundibulum or calyceal profile (Fig. 64), or renal pelvis or calyceal displacement (Fig. 65).

Fig. 63
figure 63

(a–e) Appearances of minus images corresponding to renal pelvis or calyceal defects or amputations. (a) Scheme with the evidence of the ideal line connecting the external renal calyx profiles: (1) vascular notching; (2) filling defect due to a tumor, stone, or clot; (3) calyceal erosion due to tumor; (4) normal calyx; (5) calyceal deformity due to tumor; (6) calyceal amputation due to tumor; (7) calyceal amputation due to tuberculosis; (b) intravenous excretory urography. Notching at the level of the left pyeloureteral junction (arrow) due to a peripheral vessel. Vascular notches may determine minus images also at the level of renal calyces. (c, d) Filling defects (arrows) of the renal pelvis or renal calyces due to urothelial carcinoma. (e) Multidetector CTU. Coronal reformation. Filling defect on the renal pelvis with infundibula amputation due to renal lymphoma (arrow). (f) intravenous excretory urography–nephrotomography. Upper calyceal amputation (arrow) due to renal fibrosclerosing tuberculosis

Fig. 64
figure 64

(a, b) Appearances of minus images corresponding to changes of the infundibulum or calyceal profile. (a) Scheme with evidence of the ideal line connecting the external renal calyx profiles; (b, c) intravenous excretory urography. Urography–nephrotomography (b) and intravenous urography (c). Narrowing of the renal calyces (arrow in b, and arrows in d) due to renal sinus lipomatosis. (d) CT urography. Narrowing of the renal upper calyx (arrow) due to renal sinus lipomatosis in a 65-year-old man. Renal sinus lipomatosis may determine also minus images with the alteration of the calyx morphology with the elongation of the infundibulum profile. (e) CT urography. Narrowing of the renal upper and middle calyces and of the pyeloureteral junction (arrow) due to parapyelic cysts

Fig. 65
figure 65

(a) Appearances of minus images corresponding to renal pelvis or calyceal displacement due to renal cyst or solid mass of different size and location determining renal pelvis or calyceal displacement (numbered from 1 to 4). (a) Scheme with the evidence of the ideal line connecting the external renal calyx profiles; (b) intravenous excretory urography. Calyceal displacement (arrow) due to renal cysts; (c) intravenous excretory urography. Calyceal displacement (arrowheads) due to a solid renal mass; (d, e) multidetector CTU. Calyceal displacement (arrow) due to renal cysts

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Quaia, E., Martingano, P., Cavallaro, M., Premm, M., Angileri, R. (2014). Normal Radiological Anatomy and Anatomical Variants of the Kidney. In: Quaia, E. (eds) Radiological Imaging of the Kidney. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54047-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54047-9_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54046-2

  • Online ISBN: 978-3-642-54047-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics