Skip to main content

Acute Management of Traumatic Bone Defects in the Lower Limb

  • Chapter
  • First Online:
European Instructional Lectures

Part of the book series: European Instructional Lectures ((EICL,volume 14))

Abstract

In severe trauma of the lower limb, acute management needs to refer to Damage Control Orthopaedics (DCO). When additional bone, loss is encountered, surgeons face more challenging situations and decision about treatment of the bone loss is difficult. Critical size defects are those exceeding 5 cm and they cannot be treated by conventional bone grafting due to graft resorption and additional procedures needs for complete fusion. The induced membrane technique, so-called Masquelet technique, is dedicated to treat very huge bone defects up to 25 cm, using a two-stage procedure with a cement spacer insertion for six to eight weeks then filling the chamber created around by autologous cancellous morcelized bone graft. Ilizarov techniques can be used either by immediate shortening, acute shortening followed by compression-distraction techniques, or bone transport. Advantages and pitfalls include difficulty for shortening over 3 cm, length of external fixation with infection pin sites, docking site non-union, and extrusion of transferred bone due to retraction of soft tissue in the defect. Free vascularized fibula transfer is the last option for acute reconstruction for traumatic bone loss in case of femoral bone loss with a double-barreled technique or tibial defect over 12 cm. Tissue engineering will modify solutions by combining mesenchymal stem cells, specific scaffolds, and growth factors such as bone morphogenetic proteins (BMP).

© EFORT 2014

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hildebrand F, Giannoudis P, Kretteck C, Pape HC. Damage control: extremities. Injury. 2004;35(7):678–89.

    Article  PubMed  Google Scholar 

  2. Nahm NJ, Vallier HA. Timing of definitive treatment of femoral shaft fractures in patients with multiple injuries: a systematic review of randomized and nonrandomized trials. J Trauma Acute Care Surg. 2012;73(5):1046–63.

    Article  PubMed  Google Scholar 

  3. Watson JT, Anders M, Moed BR. Management strategies for bone loss in tibial shaft fractures. Clin Orthop Relat Res. 1995;315:138–52.

    PubMed  Google Scholar 

  4. Scalea TM, Boswell SA, Scott JD, Mitchell KA, Kramer ME, Pollak AN. External fixation as a bridge to intramedullary nailing for patients with multiple injuries and with femur fractures: damage control orthopedics. J Trauma. 2000;48(4):613–21.

    Article  CAS  PubMed  Google Scholar 

  5. Pape HC, Tornetta 3rd P, Tarkin I, Tzioupis C, Sabeson V, Olson SA. Timing of fracture fixation in multitrauma patients: the role of early total care and damage control surgery. J Am Acad Orthop Surg. 2009;17(9):541–9.

    PubMed  Google Scholar 

  6. Meinig R. Management of traumatic bone defects. In: Sanders R, Borrelli JJ, Pape H-C, editors. The poly-traumatized patient with fractures. Berlin/Heidelberg: Springer; 2011. p. 295–303.

    Chapter  Google Scholar 

  7. Masquelet AC, Begue T. The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am. 2010;41(1):27–37.

    Article  PubMed  Google Scholar 

  8. Green SA. Skeletal defects. A comparison of bone grafting and bone transport for segmental skeletal defects. Clin Orthop Relat Res. 1994;301:111–17.

    PubMed  Google Scholar 

  9. Calori GM, Phillips M, Jeetle S, Tagliabue L, Giannoudis PV. Classification of non-union: need for a new scoring system? Injury. 2008;39 Suppl 2:S59–63.

    Article  PubMed  Google Scholar 

  10. Lasanianos NG, Kanakaris NK, Giannoudis PV. Current management of long bone large segmental defects. Orthop Trauma. 2010;24(2):149–63.

    Article  Google Scholar 

  11. Dugan TR, Hubert MG, Siska PA, Pape HC, Tarkin IS. Open supracondylar femur fractures with bone loss in the polytraumatized patient – Timing is everything! Injury. 2013;44(12):1826–31.

    Article  PubMed  Google Scholar 

  12. Lindsey RW, Gugala Z, Milne E, Sun M, Gannon FH, Latta LL. The efficacy of cylindrical titanium mesh cage for the reconstruction of a critical-size canine segmental femoral diaphyseal defect. J Orthop Res. 2006;24(7):1438–53.

    Article  CAS  PubMed  Google Scholar 

  13. Sands S, Siska P, Tarkin I. Reconstructive strategies for skeletal complications in the polytrauma patient. In: Pape H-C, Sanders R, Borrelli JJ, editors. The poly-traumatized patient with fractures. Berlin/Heidelberg: Springer; 2011. p. 333–44.

    Chapter  Google Scholar 

  14. Marino JT, Ziran BH. Use of solid and cancellous autologous bone graft for fractures and nonunions. Orthop Clin North Am. 2010;41(1):15–26; table of contents.

    Article  PubMed  Google Scholar 

  15. Pelissier P, Boireau P, Martin D, Baudet J. Bone reconstruction of the lower extremity: complications and outcomes. Plast Reconstr Surg. 2003;111(7):2223–9.

    Article  PubMed  Google Scholar 

  16. Masquelet AC, Fitoussi F, Begue T, Muller GP. Reconstruction of the long bones by the induced membrane and spongy autograft. Ann Chir Plast Esthet. 2000;45(3):346–53.

    CAS  PubMed  Google Scholar 

  17. Klaue K, Knothe U, Anton C, Pfluger DH, Stoddart M, Masquelet AC, et al. Bone regeneration in long-bone defects: tissue compartmentalisation? In vivo study on bone defects in sheep. Injury. 2009;40 Suppl 4:S95–102.

    Article  PubMed  Google Scholar 

  18. Pelissier P, Masquelet AC, Bareille R, Pelissier SM, Amedee J. Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J Orthop Res. 2004;22(1):73–9.

    Article  CAS  PubMed  Google Scholar 

  19. Donegan DJ, Scolaro J, Matuszewski PE, Mehta S. Staged bone grafting following placement of an antibiotic spacer block for the management of segmental long bone defects. Orthopedics. 2011;34(11):e730–5.

    PubMed  Google Scholar 

  20. Taylor BC, French BG, Fowler TT, Russell J, Poka A. Induced membrane technique for reconstruction to manage bone loss. J Am Acad Orthop Surg. 2012;20(3):142–50.

    Article  PubMed  Google Scholar 

  21. Karger C, Kishi T, Schneider L, Fitoussi F, Masquelet AC. Treatment of posttraumatic bone defects by the induced membrane technique. Orthop Traumatol Surg Res. 2012;98(1):97–102.

    Article  CAS  PubMed  Google Scholar 

  22. Apard T, Bigorre N, Cronier P, Duteille F, Bizot P, Massin P. Two-stage reconstruction of post-traumatic segmental tibia bone loss with nailing. Orthop Traumatol Surg Res. 2010;96(5):549–53.

    Article  CAS  PubMed  Google Scholar 

  23. Attias N, Lindsey RW. Case reports: management of large segmental tibial defects using a cylindrical mesh cage. Clin Orthop Relat Res. 2006;450:259–66.

    Article  PubMed  Google Scholar 

  24. Rigal S, Merloz P, Le Nen D, Mathevon H, Masquelet AC. Bone transport techniques in posttraumatic bone defects. Orthop Traumatol Surg Res. 2012;98(1):103–8.

    Article  CAS  PubMed  Google Scholar 

  25. El-Rosasy MA. Acute shortening and re-lengthening in the management of bone and soft-tissue loss in complicated fractures of the tibia. J Bone Joint Surg Br. 2007;89(1):80–8.

    Article  CAS  PubMed  Google Scholar 

  26. Sen C, Kocaoglu M, Eralp L, Gulsen M, Cinar M. Bifocal compression-distraction in the acute treatment of grade III open tibia fractures with bone and soft-tissue loss: a report of 24 cases. J Orthop Trauma. 2004;18(3):150–7.

    Article  PubMed  Google Scholar 

  27. Burkhart KJ, Rommens PM. Intramedullary application of bone morphogenetic protein in the management of a major bone defect after an Ilizarov procedure. J Bone Joint Surg Br. 2008;90(6):806–9.

    Article  CAS  PubMed  Google Scholar 

  28. Nho SJ, Helfet DL, Rozbruch SR. Temporary intentional leg shortening and deformation to facilitate wound closure using the Ilizarov/Taylor spatial frame. J Orthop Trauma. 2006;20(6):419–24.

    Article  PubMed  Google Scholar 

  29. Paley D, Maar DC. Ilizarov bone transport treatment for tibial defects. J Orthop Trauma. 2000;14(2):76–85.

    Article  CAS  PubMed  Google Scholar 

  30. El-Alfy B, El-Mowafi H, El-Moghazy N. Distraction osteogenesis in management of composite bone and soft tissue defects. Int Orthop. 2010;34(1):115–18.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Saleh M, Rees A. Bifocal surgery for deformity and bone loss after lower-limb fractures. Comparison of bone-transport and compression-distraction methods. J Bone Joint Surg Br. 1995;77(3):429–34.

    CAS  PubMed  Google Scholar 

  32. Pelissier P, Casoli V, Demiri E, Martin D, Baudet J. Soleus-fibula free transfer in lower limb reconstruction. Plast Reconstr Surg. 2000;105(2):567–73.

    Article  CAS  PubMed  Google Scholar 

  33. El-Gammal TA, Shiha AE, El-Deen MA, El-Sayed A, Kotb MM, Addosooki AI, et al. Management of traumatic tibial defects using free vascularized fibula or Ilizarov bone transport: a comparative study. Microsurgery. 2008;28(5):339–46.

    Article  PubMed  Google Scholar 

  34. Beris AE, Lykissas MG, Korompilias AV, Vekris MD, Mitsionis GI, Malizos KN, et al. Vascularized fibula transfer for lower limb reconstruction. Microsurgery. 2011;31(3):205–11.

    Article  PubMed  Google Scholar 

  35. Levin LS. Vascularized fibula graft for the traumatically induced long-bone defect. J Am Acad Orthop Surg. 2006;14(10 Spec No.):175–6.

    Google Scholar 

  36. Li LJ, Liu N, Shi JG, Liu Q, Jia LS, Yuan W. Osteogenic scaffolds for bone reconstruction. Biores Open Access. 2012;1(3):137–44.

    Article  PubMed Central  PubMed  Google Scholar 

  37. McKee MD. Management of segmental bony defects: the role of osteoconductive orthobiologics. J Am Acad Orthop Surg. 2006;14(10 Spec No.):S163–7.

    PubMed  Google Scholar 

  38. Chang SH, Hsu YM, Wang YJ, Tsao YP, Tung KY, Wang TY. Fabrication of pre-determined shape of bone segment with collagen-hydroxyapatite scaffold and autogenous platelet-rich plasma. J Mater Sci Mater Med. 2009;20(1):23–31.

    Article  CAS  PubMed  Google Scholar 

  39. Watson JT. Nonunion with extensive bone loss: reconstruction with Ilizarov techniques and orthobiologics. Oper Tech Orthop. 2008;18(2):95–107.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Begue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 EFORT

About this chapter

Cite this chapter

Begue, T., Auregan, J.C. (2014). Acute Management of Traumatic Bone Defects in the Lower Limb. In: Bentley, G. (eds) European Instructional Lectures. European Instructional Lectures, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54030-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54030-1_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54029-5

  • Online ISBN: 978-3-642-54030-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics