Skip to main content

Linking Biomedical Data for Disease-SNP Relation Discovery

  • Conference paper
Linked Data and Knowledge Graph (CSWS 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 406))

Included in the following conference series:

  • 1279 Accesses

Abstract

Traditional relation discovery is always conducted through either text mining or database analysis. However, in the real world, knowledge exists in different formats and can be expressed in a variety of forms. Discovering relations between diseases and single-nucleotide polymorphisms (SNPs) is challenging because of difficulties in unstructured data processing or distributed heterogeneous data integration. With the development of Sematic Web theory and technology, it provides feasibility to reconstruct the traditional data integration process in a sematic manner in the biomedical big data era. Our study aims to discover disease-SNP relation in integrated linked data to facilitate scientific research analyses and reduce biological experiment costs. We focus on investigating the capability of linked data techniques in integrating and mining relationships between diseases, genes, and SNPs. To demonstrate the effectiveness of our proposed method, we conducted a case study in Alzheimer’s disease-SNPs discovery by integrating 10 datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. ChengHong, Y., YuHuei, C., LiYeh, C., HsuehWei, C.: Drug-SNPing: an integrated drug-based, protein interaction-based tag SNP-based pharmacogenomics platform for SNP genotyping. Bioinformatics 29, 758–764 (2013)

    Article  Google Scholar 

  2. Wataru, S., Yuko, N., Ikuko, M., Yushi, H., Chiyomi, I., Michiaki, K., Takahisa, K., Tatsuhiko, T., Masahiko, W., Atsushi, T., Hiroyuki, T., Kenji, N., Kazuko, H., Fumiya, O., Takeo, Y., Hideshi, K., Saburo, S., Mitsutoshi, Y., Nobutaka, H., Miho, M.: Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nature Genetics 41, 1303–1307 (2009)

    Article  Google Scholar 

  3. Slater, T., Bouton, C., Huang, E.S.: Beyond data integration. Drug Discovery 13, 584–589 (2008)

    Article  Google Scholar 

  4. Neumann, E.K.: A life science semantic web: are we there yet? Scienc Today 283, 22–25 (2005)

    Google Scholar 

  5. Neumann, E.K., Miller, E., Wilbanks, J.: What the semantic web could do for the life sciences. Drug Discovery Today 2, 228–234 (2006)

    Google Scholar 

  6. Xiao, D., Ying, D., Huijun, W., Bin, C., David, J.: Chem2Bio2RDF Dashboard: Ranking Semantic Associations in Systems Chemical Biology Space. In: FWCS(The Future of the Web for Collaborative Science), Raleigh, USA (April 26, 2010)

    Google Scholar 

  7. Vidal, M.-E., Raschid, L., Márquez, N., Rivera, J.C., Ruckhaus, E.: BioNav: An Ontology-Based Framework to Discover Semantic Links in the Cloud of Linked Data. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part II. LNCS, vol. 6089, pp. 441–445. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Benjamin, B., Ranjana, S., Ritika, S., Phani, T.: Pathfinder: Complex Relation Discovery and Ontological Management Software for Generic Ontologies or Web Based Triples, http://obiwan.cs.ndsu.nodak.edu/~rsharma/AIProject.pdf

  9. Harland, L.: Open PHACTS: A semantic knowledge infrastructure for public and commercial drug discovery research. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 1–7. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Chung, Y.A., Hyun, O.J., Kim, J.Y., Kim, K.J., Ahn, K.: Hypoperfusion and Ischemia in Cerebral Amyloid Angiopathy Documented by 99mTc-ECD Brain Perfusion SPECT. J. Nucl. Med. 50, 1969–1974 (2009)

    Article  Google Scholar 

  11. Weller, R.O., Preston, S.D., Subash, M., Carare, R.O.: Cerebral amyloid angiopathy in the aetiology and immunotherapy of Alzheimer disease. Alzheimers Res. Ther. 1, 6 (2009)

    Article  Google Scholar 

  12. Yamada, M.: Predicting cerebral amyloid angiopathy-related intracerebral hemorrhages and other cerebrovascular disorders in Alzheimer’s disease. Front Neurol. 3, 64 (2012)

    Google Scholar 

  13. Weller, R.O., Preston, S.D., Subash, M., Carare, R.O.: Cerebral amyloid angiopathy in the aetiology and immunotherapy of Alzheimer disease. Alzheimer’s Research & Therapy 1, 6 (2009)

    Article  Google Scholar 

  14. Thal, D.R., Griffin, W.S., de Vos, R.A., Ghebremedhin, E.: Cerebral amyloid angiopathy and its relationship to Alzheimer’s disease. Acta Neuropathologica 115, 599–609 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hong, N., Qian, Q., Fang, A., Wu, S., Wang, J. (2013). Linking Biomedical Data for Disease-SNP Relation Discovery. In: Qi, G., Tang, J., Du, J., Pan, J.Z., Yu, Y. (eds) Linked Data and Knowledge Graph. CSWS 2013. Communications in Computer and Information Science, vol 406. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54025-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54025-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54024-0

  • Online ISBN: 978-3-642-54025-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics