Abstract
A relevant problem in systems biology is the description of the regulatory interactions between genes. It is observed that pairs of genes have significant correlation through several experimental conditions. The question is to find causal relationships that can explain this experimental evidence.
A putative regulatory network can be represented by an oriented weighted graph, where vertices represent genes, arcs represent predicted regulatory interactions and the arc weights represent the p-value of the prediction. Given such graph, and experimental evidence of correlation between pairs of vertices, we propose an abstraction and a method to enumerate all parsimonious subgraphs that assign causality relationships compatible with the experimental evidence.
When the problem is modeled as the minimization of a global weight function, we show that the enumeration of scenarios is a hard problem. As an heuristic, we model the problem as a set of independent minimization problems, each solvable in polynomial time, which can be combined to explore a relevant subset of the solution space. We present a logic-programming formalization of the model implemented using Answer Set Programming.
We show that, when the graph follows patterns that can be found in real organisms, our heuristic finds solutions that are good approximations to the full model. We encoded these approach using Answer Set Programming, applied this to a specific case in the organism E. coli and compared the execution time of each approach.
Keywords
- Genic regulatory network reconstruction
- Complexity
- Algorithm
- Heuristics
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res. 25(17), 3389–3402 (1997)
Aravena, A., Guziolowski, C., Ostrowski, M., Schaub, T., Eveillard, D., Maass, A., Siegel, A.: Deciphering regulatory relationships with a logic-based model of causality for gene expression associations (2013) (in preparation)
Bailey, T.L., Boden, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren, J., Li, W.W., Noble, W.S.: Meme suite: tools for motif discovery and searching. Nucleic Acids Research 37 (Web Server issue), W202 (2009)
Baral, C.: Knowledge representation, reasoning and declarative problem solving. Cambridge University Press (2003)
Butte, A.J., Kohane, I.S.: Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. In: Pac. Symp. Biocomput., pp. 418–429 (2000)
Calzone, L., Fages, F., Soliman, S.: Biocham: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics (2006)
Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling and querying biomolecular interaction networks. Theoretical Computer Science 325(1), 25–44 (2004)
Csardi, G., Nepusz, T.: The igraph software package for complex network research. InterJournal, Complex Systems 1695 (2006)
Danos, V., et al.: Rule-based modelling of cellular signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 17–41. Springer, Heidelberg (2007)
Danos, V., Feret, J., Fontana, W., Harmer, R., Hayman, J., Krivine, J., Thompson-Walsh, C.D., Winskel, G.: Graphs, rewriting and pathway reconstruction for rule-based models. In: D’Souza, D., Kavitha, T., Radhakrishnan, J. (eds.) IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2012. LIPIcs, vol. 18, pp. 276–288. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012)
Davidson, E., Levin, M.: Gene regulatory networks. Proceedings of the National Academy of Sciences of the United States of America 102(14), 4935 (2005)
de Jong, H., Geiselmann, J., Hernandez, C., Page, M.: Genetic network analyzer: qualitative simulation of genetic regulatory networks. Bioinformatics 19(3), 336–344 (2003)
Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959)
Garey, M.R., Johnson, D.S.: Computers and Intractability (A guide to the theory of NP-completeness). W.H. Freeman and Company, New York (1979)
Gebser, M., Kaminski, R., Ostrowski, M., Schaub, T., Thiele, S.: On the input language of ASP grounder gringo. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 502–508. Springer, Heidelberg (2009)
Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.: Potassco: The potsdam answer set solving collection. AI Communications 24(2), 107–124 (2011)
Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP/SLP, vol. 88, pp. 1070–1080 (1988)
Herrgård, M.J., Covert, M.W., Palsson, B.Ø.: Reconstruction of microbial transcriptional regulatory networks. Curr. Opin. Biotechnol. 15(1), 70–77 (2004)
Johnson, D., Yannakakis, M., Papadimitriou, C.: On generating all maximal independent sets. Information Processing Letters 27(3), 119–123 (1988)
Karp, R.M.: Reducibility Among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)
Khachiyan, L., Boros, E., Elbassioni, K., Gurvich, V., Makino, K.: Enumerating disjunctions and conjunctions of paths and cuts in reliability theory. Discrete Applied Mathematics 155(2), 137–149 (2007)
Marbach, D., Prill, R.J., Schaffter, T., Mattiussi, C., Floreano, D., Stolovitzky, G.: Revealing strengths and weaknesses of methods for gene network inference. In: Proceedings of the National Academy of Sciences (2010)
Medina-Rivera, A., Abreu-Goodger, C., Thomas-Chollier, M., Salgado, H., Collado-Vides, J., van Helden, J.: Theoretical and empirical quality assessment of transcription factor-binding motifs. Nucleic Acids Research 39(3), 808–824 (2011)
Meyer, P.E., Kontos, K., Lafitte, F., Bontempi, G.: Information-theoretic inference of large transcriptional regulatory networks. EURASIP J. Bioinform. Syst. Biol., 79879 (2007)
R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2012). ISBN 3-900051-07-0
Streit, A., Tambalo, M., Chen, J., Grocott, T., Anwar, M., Sosinsky, A., Stern, C.D.: Experimental approaches for gene regulatory network construction: The chick as a model system. Genesis 51(5), 296–310 (2013)
Taboada, B., Ciria, R., Martinez-Guerrero, C.E., Merino, E.: Proopdb: Prokaryotic operon database. Nucleic Acids Res. 40(Database issue), D627–D631 (2012)
Xiao, Y.: A tutorial on analysis and simulation of boolean gene regulatory network models. Current Genomics 10(7), 511 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Acuña, V., Aravena, A., Maass, A., Siegel, A. (2014). Modeling Parsimonious Putative Regulatory Networks: Complexity and Heuristic Approach. In: McMillan, K.L., Rival, X. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2014. Lecture Notes in Computer Science, vol 8318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54013-4_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-54013-4_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54012-7
Online ISBN: 978-3-642-54013-4
eBook Packages: Computer ScienceComputer Science (R0)