Self-Assembly and Nano-layering of Apatitic Calcium Phosphates in Biomaterials

Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 2)


Among many calcium phosphates, apatitic ones are by far familiar because of their lattice structure similar to bone apatites. Yet, if one wants an apatite layer as a tool for improving tissue compatibility, regardless of hard or soft tissues, stoichiometric apatite is not necessary but nonstoichiometric apatite, e.g., with calcium ion deficiency or partial carbonate ion substitution, is preferable. Such apatite is easily provided on the surface of several materials when they are in contact with plasma; the materials include silicate glass and glass-ceramics and organic–inorganic hybrids with Si–O or Ti–O bonds as their skeleton, as well as some oxide gels derived via the sol-gel procedure. Moreover, proper water-soluble glass with specific compositions will be converted to apatite agglomerates or to rod- or needlelike apatite crystallites in array on their surface. The present chapter reviews deposition of apatitic calcium phosphates on such materials under body environment and their deposition mechanism in relation to constructing bone tissue as a hybrid between collagen fibrils and apatite crystallites.


Apatite Nonstoichiometric Apatite deposition Tissue compatibility Glass-ceramics Titanium alloys Oxide gels Organic–inorganic hybrids 



The author is very grateful of all the works introduced here and should apologize for not all work pertinent to this topic are described, as it is impossible.


  1. 1.
    Pourbaix M (1966) Atlas of electrochemical Equilibria in aqueous solutions. Pergamon Press, Oxford, p 504Google Scholar
  2. 2.
    Ohtsuki C, Aoki Y, Kokubo T, Bando Y, Neo M, Nakamura T (1995) Transmission electron microscopic observation of glass-ceramic A-W and apatite layer formed on its surface in a simulated body fluid. J Ceram Soc Japan 103:449–454Google Scholar
  3. 3.
    Chow LC (2009) Next generation calcium phosphate-based biomaterials. Dent Mater J 28:1–10Google Scholar
  4. 4.
    Ishikawa K (2010) Bone substitute fabrication based on dissolution-precipitation reactions. Materials 3:1138–1155Google Scholar
  5. 5.
    Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510Google Scholar
  6. 6.
    Hench LL, Andersson ÖL (1993) Bioactive glasses. In: Hench LL, Wilson J (eds) Introduction to bioceramics. World Scientific, Singapore, pp 41–62Google Scholar
  7. 7.
    Hench LL, Day DE, Höland W, Rheinberger VM (2000) Glass and medicine. Intern J Appl Glass Sci 1:104–117Google Scholar
  8. 8.
    Cormack AN, Tilocca A (2012) Structure and biological activity of glasses and ceramics. Philos Trans R Soc A 370:1271–1280Google Scholar
  9. 9.
    Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774Google Scholar
  10. 10.
    Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9:4457–4486Google Scholar
  11. 11.
    Clark AE, Pantano CG, Hench LL (1976) Auger spectroscopic analysis of bioglass corrosion films. J Am Ceram Soc 59:37–39; Hench LL (1975) Characterization of glass corrosion and durability. J Non-Crystal Solids 19:27–39Google Scholar
  12. 12.
    Hayakawa S, Tsuru K, Iida H, Ohtsuki C, Osaka A (1996) MAS NMR studies of apatite formation on 50CaO•50SiO2 glass in a simulated body fluid. Phys Chem Glasses 37:188–192Google Scholar
  13. 13.
    Hayakawa S, Tsuru K, Ohtsuki C, Osaka A (1999) Mechanism of apatite formation on a sodium silicate glass in a simulated body fluid. J Am Ceram Soc 82:2155–2160Google Scholar
  14. 14.
    Gross U, Stunz V (1985) The interface of various glasses and glass ceramics with a bony implantation bed. J Biomed Mat Res 19:251–271Google Scholar
  15. 15.
    Gross U, Müller-Mai C, Voigt C (1993) Ceravital® bioactive glass-ceramics. In: Hench LL, Wilson J (eds) Introduction to bioceramics. World Scientific, Singapore, pp 105–123Google Scholar
  16. 16.
    Vogel W, Höland W (1987) Development of bioglass ceramics for medical applications. Angew Chem Int Engl Ed 26:527–544Google Scholar
  17. 17.
    Vogt JC, Brandes G, Krüger I, Behrens P, Nolte I, Lenarz T, Stieve M (2008) A comparison of different nanostructured biomaterials in subcutaneous tissue. J Mater Sci Mater Med 19:2629–2636Google Scholar
  18. 18.
    Kokubo T (1991) Recent progress in glass-based materials for biomedical applications. J Ceram Soc 99:965–973Google Scholar
  19. 19.
    Neo M, Nakamura T, Yamamuro T, Ohtsuki C, Kokubo T (1993) Apatite formation on three kinds of bioactive mineral at an early stage in vivo: a comparative study by transmission electron microscopy. J Biomed Mater Res 27:999–1006Google Scholar
  20. 20.
    Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915Google Scholar
  21. 21.
    Cho SB, Nakanishi K, Kokubo T, Soga N, Ohtsuki C, Nakamura T, Kitsugi T, Yamamuro T (1995) Dependence of apatite formation on silica gel on its structure: effect of heat treatment. J Am Ceram Soc 78:1769–1774Google Scholar
  22. 22.
    Kokubo T, Kushitani H, Ohtsuki C, Sakka S, Yamamuro T (1992) Chemical reaction of bioactive glass and glass-ceramics with a simulated body fluid. J Mater Sci Mater Med 3:79–83Google Scholar
  23. 23.
    Round robin test: The 9th World Biomaterials Congress, Chengdu, China, 1–5 June 2012Google Scholar
  24. 24.
    Nakanishi K (1997) Pore structure control of silica gels based on phase separation. J Porous Mater 4:67–112Google Scholar
  25. 25.
    Cho SB, Nakanishi K, Kokubo T, Soga N, Ohtsuki C, Nakamura T (1996) Apatite formation on silica gel in simulated body fluid: its dependence on structures of silica gels prepared in different media. J Biomed Mater Res 33:145–151Google Scholar
  26. 26.
    Tsuru K, Kubo M, Hayakawa S, Ohtsuki C, Osaka A (2001) Kinetics of apatite deposition of silica gel dependent on the inorganic ion composition of simulated body fluids. Ceram Soc Jpn 109:412–418Google Scholar
  27. 27.
    Onuma K, Ito A (1998) Cluster growth model for hydroxyapatite. Chem Mater 10:3346–3351Google Scholar
  28. 28.
    Posner AS, Betts F (1975) Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Acc Chem Res 8:273–281Google Scholar
  29. 29.
    Onuma K, Ito A, Tateishi T (1996) Investigation of a growth unit of hydroxyapatite crystal from the measurements of step kinetics. J Cryst Growth 167:773–776Google Scholar
  30. 30.
    Ducheyne P, Hench LL (1982) The processing and static mechanical properties of metal fibre reinforced bioglass. J Mater Sci 17:595–606Google Scholar
  31. 31.
    Hench LL, Andersson Ö (1993) Bioactive glass coatings. In: Hench LL, Wilson J (eds) Introduction to bioceramics. World Scientific, Singapore, pp 239–259Google Scholar
  32. 32.
    Ducheyene P, Martens M, Burssens A (1984) Materials, clinical and morphological evaluation of custom-made bioreactive-glass-coated canine. J Biomed Mater Res 18:1017–1030Google Scholar
  33. 33.
    Müller-Mai C, Schmitz HJ, Strunz V, Fuhrmann G, Fritz T, Gross UM (1989) Tissues at the surface of the new composite material titanium/glass-ceramic for replacement of bone and teeth. J Biomed Mater Res 23:1149–1168Google Scholar
  34. 34.
    Ferraris M, Rabajoli P, Paracchini L, Brossa F (1996) Vacuum plasma spray deposition of titanium particle/glass-ceramic matrix biocomposites. J Am Ceram Soc 79:1515–1520Google Scholar
  35. 35.
    Moritz N, Vedel E, Ylänen H, Jokinen M, Hupa M, Yli-Urpo A (2004) Characterisation of bioactive glass coatings on titanium substrates produced using a CO2 laser. J Mater Sci Mater Med 15:787–794Google Scholar
  36. 36.
    Foppiano S, Marshall SJ, Saiz E, Tomsia AP, Marshall GW (2006) Functionally graded bioactive coatings: reproducibility and stability of the coating under cell culture conditions. Acta Biomater 2:133–142Google Scholar
  37. 37.
    Gomez-Vega JM, Saiz E, Tomsia AP (1999) Glass-based coatings for titanium implant alloys. J Biomed Mater Res 46:549–559Google Scholar
  38. 38.
    Gomez-Vega JM, Saiz E, Tomsia AP, Marshall GW, Marshall SJ (2000) Bioactive glass coatings with hydroxyapatite and Bioglass® particles on Ti-based implants. 1. Processing. Biomaterials 21:105–111Google Scholar
  39. 39.
    Vitale-Brovarone C, Verné E (2005) SiO2-CaO-K2O coatings on alumina and Ti6Al4V substrates for biomedical applications. J Mater Sci Mater Med 16:863–871Google Scholar
  40. 40.
    Osaka A (2012) Beyond current interpretation of bonding between silicate ceramics and bone. Phosphorus Res Bull 26:18–22Google Scholar
  41. 41.
    Nagayama H, Honda H, Kawahara H (1988) A new process for silica coating. J Electrochem Soc 135:2013–2016Google Scholar
  42. 42.
    Hishinuma A, Goda T, Kitaoka M, Hayashi S, Kawahara H (1991) Formation of silicon dioxide films in acidic solutions. Appl Surf Sci 48–49:405–408Google Scholar
  43. 43.
    Deki S, Aoi Y, Asaoka Y, Kajinami A, Mizuhata M (1997) Monitoring the growth of titanium oxide thin films by the liquid-phase deposition method with a quartz crystal microbalance. J Mater Chem 7:733–736Google Scholar
  44. 44.
    Yao T, Inui T, Ariyoshi A (1996) Novel method for Zirconium Oxide synthesis from aqueous solution. J Am Ceram Soc 79:3329–3330Google Scholar
  45. 45.
    Ozawa N, Ideta Y, Yao T, Kokubo T (2003) Apatite formation on polymers coated with Titania synthesized from an aqueous solution. In: Ben-Nissan B, Sher D, Walsh W (eds) Proceedings of the 15th international symposium on ceramics in medicine, Sydney, 4–8 Dec 2002. Key Eng Mater 240–242:71–74Google Scholar
  46. 46.
    Sato K, Onodera D, Hibino M, Yao T (2006) Development of bioactive organic polymer coated with ceramic thin films synthesized from aqueous solution. In: Nakamura T, Yamashita K, Neo M (eds) Proceedings of the 18th international symposium on ceramics in medicine, Kyoto, Japan, 5–8 Dec 2005. Key Eng Mater 309–311:771–774Google Scholar
  47. 47.
    Tanahashi M, Yao T, Kokubo Y, Minoda M, Miyamoto T, Nakamura T, Yamamuro T (1994) Apatite coating on organic polymers by a biomimetic process. J Am Ceram Soc 77:2805–2808Google Scholar
  48. 48.
    Balasa F, Kawashita M, Nakamura T, Kokubo T (2006) Formation of bone-like apatite on organic polymers treated with a silane-coupling agent and a titania solution. Biomaterials 27:1704–1710Google Scholar
  49. 49.
    Oyane A, Kawashita M, Kokubo T, Minoda M, Miyamoto T, Nakamura T (2002) Bone-like apatite formation on ethylene-vinyl alcohol copolymer modified with a silane coupling agent and titania solution. J Ceram Soc Jpn 110:248–254Google Scholar
  50. 50.
    Pino M, Stingelin N, Tanner KE (2008) Nucleation and growth of apatite on NaOH-treated PEEK, HDPE and UHMWPE for artificial cornea materials. Acta Biomater 4:1827–1836Google Scholar
  51. 51.
    Choi S-M, Yang W-K, Yoo Y-W, Lee W-K (2010) Effect of surface modification on the in vitro calcium phosphate growth on the surface of poly(methyl methacrylate) and bioactivity. Colloids Surf B Biointerfaces 76:326–333Google Scholar
  52. 52.
    Yokogawa Y, Reyes JP, Mucalo MR, Toriyama M, Kawamoto Y, Suzuki T, Nishizawa K, Nagata F, Kameyama T (1997) Growth of calcium phosphate on phosphorylated chitin fibres. J Mater Sci Mater Med 8:407–412Google Scholar
  53. 53.
    Yokogawa Y, Nishizawa K, Nagata F, Kameyama T (2001) Bioactive properties of chitin/chitosan-calcium phosphate composite materials. J Sol-Gel Sci Technol 21:105–113Google Scholar
  54. 54.
    Fu T, He L-P, Han Y, Xu K-W, Mai Y-W (2003) Induction of bonelike apatite on carbon–carbon composite by sodium silicate. Mater Lett 57:3500–3503Google Scholar
  55. 55.
    Furuzono T, Masuda M, Okada M, Yasuda S, Hi K, Tanaka R, Miyatake K (2006) Increase in cell adhesiveness on a poly(ethylene terephthalate) fabric by sintered hydroxyapatite nanocrystal coating in the development of an artificial blood vessel. ASAIO J 52:315–320Google Scholar
  56. 56.
    Furuzono T, Kishida A, Tanaka J (2004) Nano-scaled hydroxyapatite/polymer composite I. Coating of sintered hydroxyapatite particles on poly(γ-methacryloxypropyl trimethoxysilane)- grafted silk fibroin fibers through chemical bonding. J Mater Sci Mater Med 15:19–23Google Scholar
  57. 57.
    Korematsu A, Furuzono T, Yasuda S, Tanaka J, Kishida A (2005) Nano-scaled hydroxyapatite/polymer composite III. Coating of sintered hydroxyapatite particles on poly(4-methacryloyloxyethyl trimellitate anhydride)-grafted silk fibroin fibers. J Mater Sci Mater Med 16:67–71Google Scholar
  58. 58.
    Zhang X, Fan Z, Lu Q, Huang Y, Kaplan DL, Zhu H (2013) Hierarchical biomineralization of calcium carbonate regulated by silk microspheres. Acta Biomater 9:6974–6980Google Scholar
  59. 59.
    Nakamura A, Shishido A, Kishida I, Okada M, Furuzono T, Yokogawa Y (2004) TEM observation of hydroxyapatite nanocrystals ionically bonded onto the graft polymer-modified PET substrate. J Ceram Soc Jpn 116:100–104Google Scholar
  60. 60.
    Furuzono T, Wang P-L, Korematsu A, Miyazaki K, Oido-Mori M, Kowashi Y, Ohura K, Tanaka J, Kishida A (2003) Physical and biological evaluations of sintered hydroxyapatite/silicone composite with covalent bonding for a percutaneous implant material. J Biomed Mater Res Part B Appl Biomater 65B:217–226Google Scholar
  61. 61.
    Homeijer SJ, Barrett RA, Gower LB (2010) Polymer-Induced Liquid-Precursor (PILP) process in the non-calcium based systems of barium and strontium carbonate. Cryst Growth Des 10:1040–1052Google Scholar
  62. 62.
    Wolf SE, Leiterer J, Pipich V, Barrea R, Emmerling F, Tremel W (2011) Strong stabilization of amorphous calcium carbonate emulsion by Ovalbumin: gaining insight into the mechanism of ‘Polymer-Induced Liquid Precursor’ processes. J Am Chem Soc 133:12642–12649Google Scholar
  63. 63.
    Huang WH, Day DE, Kittiratanapiboon K, Rahaman MN (2006) Kinetics and mechanism of the conversion of silicate (45S5), borate and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. J Mater Sci Mater Med 17:583–596Google Scholar
  64. 64.
    Han X, Day DE (2007) Reaction of sodium calcium borate glasses to form hydroxyapatite. J Mater Sci Mater Med 18:1837–1847Google Scholar
  65. 65.
    Li J, Shirosaki Y, Hayakawa S, Stamboulis A, Osaka A (2012) Sol-gel preparation of apatite-coated silica macrospheres from water glass and their adsorption of bovine serum albumin and lysozyme. J Ceram Soc Jpn 120:355–361Google Scholar
  66. 66.
    Li J, Shirosaki Y, Hayakawa S, Osaka A (2013) Revisiting structure of silica gels from water glass: an 1H and 29Si MAS and CP-MAS NMR study. J Sol-Gel Sci Technol 65:135–142Google Scholar
  67. 67.
    Chen S, Osaka A, Hayakawa S, Tsuru K, Fujii K (2008) Microstructure evolution in Stöber-type silica nanoparticles and their in vitro apatite deposition. J Sol-Gel Sci Technol 48:322–335Google Scholar
  68. 68.
    Liu C-H C, Maciel E (1996) The fumed silica surface: a study by NMR. J Am Chem Soc 118:5103–5119Google Scholar
  69. 69.
    Pham KN, Fullston D, Sagoe-Crentsil K (2007) Surface modification for stability of nano-sized silica colloids. J Colloid Interf Sci 315:123–127Google Scholar
  70. 70.
    Manzano M, Aina V, Aréan CO, Balas F, Cauda V, Colilla M, Delgado MR, Vallet-Regi M (2008) Studies on MCM-41 mesoporous silica for drug delivery: effect of particle morphology and amine functionalization. Chem Eng J 137:30–37Google Scholar
  71. 71.
    Chen S, Osaka A, Hayakawa S, Tsuru K, Fujii E, Kawabata K (2008) Novel one-pot sol-gel preparation of amino-functionalized silica nanoparticles. Chem Lett 37:1170–1171Google Scholar
  72. 72.
    Chen S, Hayakawa S, Shirosaki Y, Fujii E, Kawabata K, Tsuru K, Osaka A (2009) Sol–gel synthesis and microstructure analysis of amino-modified hybrid silica nanoparticles from aminopropyltriethoxysilane and tetraethoxysilane. J Am Ceram Soc 92:2074–2082Google Scholar
  73. 73.
    Pope EJA, Mackenzie JD (1986) Sol-gel processing of silica: II. The role of the catalyst. J Non-Cryst Solids 87:185–198Google Scholar
  74. 74.
    Anderson OH, Liu G-Z, Karlsson KH, Niemi L, Miettinen J, Juhanoja J (1990) In vivo behaviour of glasses in the SiO2–Na2O-CaO-P2O5–Al2O3–B2O3 system. J Mater Sci Mater Med 1:219–227Google Scholar
  75. 75.
    Brink M, Turunen T, Happonen R-P, Yli-Urpo A (1997) Compositional dependence of bioactivity of glasses in the system Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2. J Biomed Mater Res 37:114–121Google Scholar
  76. 76.
    Di Z, Vedel E, Hupa L, Aro HT, Hupa M (2009) Predicting physical and chemical properties of bioactive glasses from chemical composition. Part 3: In vitro reactivity. Eur J Glass Sci Technol Part A 50:1–8Google Scholar
  77. 77.
    Moritz N, Vedel E, Ylänen H, Jokinen M, Hupa M, Yli-Urpo A (2004) Characterisation of bioactive glass coatings on titanium substrates produced using a CO2 laser. J Mater Sci Mater Med 15:787–802Google Scholar
  78. 78.
    Rajedran V, Begum AN, Azooz MA, El Batal FH (2002) Microstructural dependence on relevant physical–mechanical properties on SiO2–Na2O–CaO–P2O5 biological glasses. Biomaterials 23:4263–4275Google Scholar
  79. 79.
    Lossdörfer S, Schwartz Z, Lohmann CH, Greenspan DC, Ranly DM, Boyan BD (2004) Osteoblast response to bioactive glasses in vitro correlates with inorganic phosphate content. Biomaterials 25:2547–2555Google Scholar
  80. 80.
    Debdas R (2007) In vitro reactivity of Na2O–MgO–SiO2 glasses. J Phys Chem Solids 68:2321–2325Google Scholar
  81. 81.
    Daguano JK, Rogero SO, Crovace MC, Peitl O, Strecker K, dos Santos C (2013) Bioactivity and cytotoxicity of glass and glass-ceramics based on the 3CaO-P2O5–SiO2–MgO system. J Mater Sci Mater Med. 24:2171–2180Google Scholar
  82. 82.
    Ebisawa Y, Sugimoto Y, Hayash T, Kokubo T, Ohura K, Yamamuro T (1991) Crystallization of (FeO, Fe2O3)-CaO-SiO2 glasses and magnetic properties of their crystallized products. J Ceram Soc Jpn 99:7–13Google Scholar
  83. 83.
    Li G, Feng S, Zhou D (2011) Magnetic bioactive glass ceramic in the system CaO–P2O5–SiO2–MgO–CaF2–MnO2–Fe2O3 for hyperthermia treatment of bone tumor. J Mater Sci Mater Med 22:2197–2206Google Scholar
  84. 84.
    Singh RK, Srinivasan A (2010) Apatite-forming ability and magnetic properties of glass-ceramics containing zinc ferrite and calcium sodium phosphate phases. Mater Sci Eng C 30:1100–1106Google Scholar
  85. 85.
    Zhang D, Leppäranta O, Munukka E, Ylänen H, Viljanen MK, Eerola E, Hupa M, Hupa L (2010) Antibacterial effects and dissolution behavior of six bioactive glasses. J Biomed Mater Res 93A:475–483Google Scholar
  86. 86.
    Hong Y-L, Chen X-S, Jing X-B, Fan H-S, Guo B, Gu Z-W, Zhang X-D (2010) Preparation, bioactivity, and drug release of hierarchical nanoporous bioactive glass ultrathin fibers. Adv Mater 22:754–758Google Scholar
  87. 87.
    Sepulveda P, Jones JR, Hench LL (2002) In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. J Biomed Mater Res 61:301–311Google Scholar
  88. 88.
    Chrisodoulou I, Buttery LDK, Saravanapavan P, Tai G-P, Hench LL, Polak JM (2005) Dose- and time-dependent effect of bioactive gel-glass ionic-dissolution products on human fetal osteoblast-specific gene expression. J Biomed Mater Res B Appl Biomater 74B:529–537Google Scholar
  89. 89.
    Lei B, Chen X-F, Koh Y-H (2011) Effects of acidic catalysts on the microstructure and biological property of sol–gel bioactive glass microspheres. J Sol-Gel Sci Technol 58:656–663Google Scholar
  90. 90.
    Valeiro P, Pereira MM, Goes AM, Leite MF (2004) The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials 25:2941–2948Google Scholar
  91. 91.
    Zhang D, Jain H, Hupa M, Hupa L (2012) In-vitro degradation and bioactivity of tailored amorphous multi porous scaffold structure. J Am Ceram Soc 95:2687–2694Google Scholar
  92. 92.
    Arcos D, Vallet-Reggi M (2010) Sol-gel silica based biomaterials and bone tissue regeneration. Acta Biomater 6:2874–2888Google Scholar
  93. 93.
    Arcos D, Vila M, López-Noriega A, Rossignol F, Champion E, Oliveira FJ, Vallet-Reggí M (2011) Mesoporous bioactive glasses: mechanical reinforcement by means of a biomimetic process. Acta Biomat 7:2952–2959Google Scholar
  94. 94.
    Vaid C, Murugavel S (2013) Alkali oxide containing mesoporous bioactive glasses: synthesis, characterization and in vitro bioactivity. Mater Sci Eng C 33:959–968Google Scholar
  95. 95.
    Bellantone M, Coleman NJ, Hench LL (2000) Bacteriostatic action of a novel four-component bioactive glass. J Biomed Mater Res 51:484–490Google Scholar
  96. 96.
    Caturo M, Raucci M, De Gaetano F, Marrota A (2004) Antibacterial and bioactive silver-containing Na2O•CaO•2SiO2 glass prepared by sol-gel method. J Mater Sci Mater Med 15:831–837Google Scholar
  97. 97.
    Brown RF, Day DE, Day TE, Jung S, Rahaman MN, Fu Q (2008) Growth and differentiation of osteoblastic cells on 13–93 bioactive glass fibers and scaffolds. Acta Biomater 4:387–396Google Scholar
  98. 98.
    Fu Q, Rahaman MN, Bal SB, Brown RF (2010) Preparation and in vitro evaluation of bioactive glass (13–93) scaffolds with oriented microstructures for repair and regeneration of load-bearing bones. J Biomed Mater Res 93A:1380–1390Google Scholar
  99. 99.
    L-x B, Jung S, Day DE, Neidig K, Dusevich V, Eick D, Bonewald L (2012) Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in critical-sized rat calvarial defects implanted with bioactive glass scaffolds. J Biomed Mater Res Part A 100A:3267–3275Google Scholar
  100. 100.
    Liu X, Xie Z-P, Zhang C-Q, Pan H-B, Rahaman MN, Zhang X, Fu Q, Huang W-H (2010) Bioactive borate glass scaffolds: in vitro and in vivo evaluation for use as a drug delivery system in the treatment of bone infection. J Mater Sci Mater Med 21:575–582Google Scholar
  101. 101.
    Kasuga T, Hosoi Y, Nogami M, Niinomi M (2001) Apatite formation on calcium phosphate invert glasses in simulated body fluid. J Am Ceram Soc 84:450–452Google Scholar
  102. 102.
    Kasuga T (2005) Bioactive calcium pyrophosphate glasses and glass-ceramics. Acta Biomater 1:55–64Google Scholar
  103. 103.
    Fujii E, Kawabata K, Yohimatsu H, Hayakawa S, Tsuru K, Osaka A (2003) Structure and biomineralization of calcium silicate glasses containing fluoride ions. J Ceram Soc Jpn 111:762–766Google Scholar
  104. 104.
    Galliano PG, Lopes JMP (1995) Thermal behaviour of bioactive alkaline-earth silicophosphate glasses. J Mater Sci Mater Med 6:353–359Google Scholar
  105. 105.
    Brauer DS, Karpukhina N, O’Donnell MD, Law RV, Hill RG (2010) Fluoride-containing bioactive glasses: effect of glass design and structure on degradation, pH and apatite formation in simulated body fluid. Acta Biomater 6:3275–3282Google Scholar
  106. 106.
    Mneimne MG, Hill R, Bushby AJ, Brauer DS (2011) High phosphate content significantly increases apatite formation of fluoride-containing bioactive glasses. Acta Biomater 7:1827–1834Google Scholar
  107. 107.
    Lynch E, Brauer DS, Karpukhina N, Gillama DG, Hill RG (2012) Multi-component bioactive glasses of varying fluoride content for treating dentin hypersensitivity. Dent Mater 28:168–178Google Scholar
  108. 108.
    Cocchi M, Durante C, Lusvardi G, Malavasi G, Menabue L (2012) Evaluation of the behaviour of fluorine-containing bioactive glasses: reactivity in a simulated body fluid solution assisted by multivariate data analysis. J Mater Sci Mater Med 23:639–648Google Scholar
  109. 109.
    Wang Y-H, Osaka A, Miura Y (1989) Anionic conduction in lead oxyfluoride glasses. J Non-Cryst Solids 112:323–327Google Scholar
  110. 110.
    Brauer DS, Mneimne M, Hill G (2011) Fluoride-containing bioactive glasses: fluoride loss during melting and ion release in tris buffer solution. J Non-Cryst Solids 357:3328–3333Google Scholar
  111. 111.
    Massera J, Fagerlun S, Hupa L, Hupa M (2012) Crystallization mechanism of the bioactive glasses, 45S5 and S53P4. J Am Ceram Soc 95:607–613Google Scholar
  112. 112.
    Brink M (1997) The influence of alkali and alkaline earths on the working range for bioactive glasses. J Biomed Mater Res 36:109–117Google Scholar
  113. 113.
    Martín-Saavedra FM, Ruíz-Hernández E, Boré A, Arcos D, Vallet-Regí M, Vilaboa N (2010) Magnetic mesoporous silica spheres for hyperthermia therapy. Acta Biomater 6:4522–4531Google Scholar
  114. 114.
    Wang F, Tang Y-L, Zhang B-B, Chen B-D, Y-l W (2012) Preparation of novel magnetic hollow mesoporous silica microspheres and their efficient adsorption. J Colloid Interface Sci 386:129–134Google Scholar
  115. 115.
    Petchsang N, Pon-On W, Hodak JH, Tang IM (2009) Magnetic properties of Co-ferrite-doped hydroxyapatite nanoparticles having a core/shell structure. J Magn Magn Mater 321:1990–1995Google Scholar
  116. 116.
    Wu HC, Wang TW, Sun JS, Wang WH, Lin FH (2007) A novel biomagnetic nanoparticle based on hydroxyapatite. Nanotechnology 18:165601. doi: 10.1088/0957-4484/18/16/165601 Google Scholar
  117. 117.
    Maehara T, Konishi K, Kanmimori T, Aono J, Hirazawa H, Naohara T, Nomura S, Kikkawa H, Watanabe Y, Kawachi K (2005) Selection of ferrite powder for thermal coagulation therapy with alternating magnetic field. J Mater Sci Mater Med 40:135–138Google Scholar
  118. 118.
    Matsunaga T, Sakaguchi T (2000) Review: molecular mechanism of magnet formation in bacteria. J Biosci Bioeng 90:1–13Google Scholar
  119. 119.
    Matsunaga T, Okamura Y (2003) Genes and proteins involved in bacterial magnetic particle formation. TRENDS Microbiol 11:536–541Google Scholar
  120. 120.
    Tang YS, Wang D, Zhou C, Ma W, Zhang YQ, Liu B, Zhang S (2012) Bacterial magnetic particles as a novel and efficient gene vaccine delivery system. Gene Ther 19:1187–1195Google Scholar
  121. 121.
    Xynos ID, Edgar AJ, Buttery Lee DK, Hench LL, Polak JM (2001) Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J Biomed Mater Res 55:151–157Google Scholar
  122. 122.
    Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295:1014–1017Google Scholar
  123. 123.
    Conzone SD, Day DE (2009) Preparation and properties of porous microspheres made from borate glass. J Biomed Mater Res Part A 88A:531–542Google Scholar
  124. 124.
    Pouxviel JC, Boilot JP, Smaihi M, Dauger A (1988) Structural study of aluminosilicate sols and gels by small angle X-ray and neutron scattering. J Non-Cryst Solids 106:147–152Google Scholar
  125. 125.
    Ramirez-del-Solar M, Esquvias L, Craievich AF, Zarzycki JJ (1992) Ultrastructural evolution during gelation of TiO2-SiO2 sols. Non-Cryst Solids 147&148:206–212Google Scholar
  126. 126.
    Ohtsuki C, Kokubo T, Takatsuka K, Yamamuro T (1991) Compositional dependence of bioactivity of glasses in the system CaO-SiO2-P2O5 its in vitro evaluation. J Ceram Soc Jpn 99:1–6Google Scholar
  127. 127.
    Wang W, Huang D, Wang B, Darvell W, Day DE, Rahaman MN (2006) Preparation of hollow hydroxyapatite microspheres. J Mater Sci Mater Med 17:641–646Google Scholar
  128. 128.
    Huang W, Rahaman MN, Day DE, Miller BA (2009) Strength of hollow microspheres prepared by a glass conversion process. J Mater Sci Mater Med 20:123–129Google Scholar
  129. 129.
    Hayakawa S, Li Y, Tsuru K, Osaka A, Fujii E, Kawabata K (2009) Preparation of nanometer-scale rod array of hydroxyapatite crystal. Acta Biomater 5:2152–2160Google Scholar
  130. 130.
    Lotgering FK (1959) Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures. J Inorg Nucl Chem 9:113–123Google Scholar
  131. 131.
    Osaka A, Takahashi K (1983) Heats of solution of the glasses and crystals in the systems MO-P2O5 and bond energy relations in M(PO3)2 glasses. J Ceram Soc Jpn 91:395–398Google Scholar
  132. 132.
    Kasuga T, Abe Y (1999) Calcium phosphate invert glasses with soda and titania. J Non-Cryst Solids 243:70–74Google Scholar
  133. 133.
    Brow RK, Phifer CC, Turner GL, Kirkpatrick RJ (1991) Cation effects on 31P MAS NMR chemical shifts of metaphosphate glasses. J Am Ceram Soc 74:1287–1290Google Scholar
  134. 134.
    Yang WH, Kirkpatrick RJ, Turner G (1986) 31P and 29Si magic-angle sample-spinning NMR investigation of the structural environment of phosphorus in alkaline-earth silicate glasses. J Am Ceram Soc 69:C222–C223Google Scholar
  135. 135.
    Hosono H, Abe Y (1995) Porous glass–ceramics composed of a titanium phosphate crystal skeleton. J Non-Cryst Solids 190:185–197Google Scholar
  136. 136.
    Kasuga T, Kimata T, Obata A (2009) Preparation of a calcium titanium phosphate glass–ceramic with improved chemical durability. J Am Ceram Soc 92:1709–1712Google Scholar
  137. 137.
    Parks GA (1965) The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem Rev 65:177–198Google Scholar
  138. 138.
    Parks GA, de Bruyn PL (1962) The zero point of charge of oxides. J Phys Chem 66:969–973Google Scholar
  139. 139.
    Tengvall P, Lundström I (1992) Physico-chemical considerations of titanium as a biomaterial. Clin Mater 9:115–134Google Scholar
  140. 140.
    Uchida M, Kim HM, Kokubo T, Miyaji F, Nakamura T (2001) Bonelike apatite formation induced on zirconia gel in a simulated body fluid and its modified solutions. J Am Ceram Soc 84:2041–2044Google Scholar
  141. 141.
    Uchida M, Kim HM, Kokubo T, Tanaka K, Nakamura T (2002) Dependence of apatite formation on zirconia gels in a simulated body fluid. J Ceram Soc Jpn 110:710–715Google Scholar
  142. 142.
    Uchida M, Kim HM, Miyaji T, Kokubo F, Nakamura T (2002) Apatite formation on zirconium metal treated with aqueous NaOH. Biomaterials 23:313–317Google Scholar
  143. 143.
    Kokubo T, Matsushita T, Takadama H (2007) Titania-based bioactive materials. J Eur Ceram Soc 27:1553–1558Google Scholar
  144. 144.
    Kokubo T, Matsushita T, Takadama H, Kizuki T (2009) Development of bioactive materials based on surface chemistry. J Eur Ceram Soc 29:1267–1274Google Scholar
  145. 145.
    Uchida M, Kim HM, Kokubo T, Nawa M, Asano T, Tanaka K, Nakamura T (2002) Apatite-forming ability of a zirconia/alumina nano-composite induced by chemical treatment. J Biomed Mater Res 60:277–282Google Scholar
  146. 146.
    Miyazaki T, Kim HM, Kokubo T, Ohtsuki C, Kato H, Nakamura T (2001) Apatite-forming ability of niobium oxide gels in a simulated body fluid. J Ceram Soc Jpn 109:929–933Google Scholar
  147. 147.
    Miyazaki T, Kim HM, Kokubo T, Kato H, Nakamura T (2000) Bioactive tantalum metal prepared by NaOH treatment. J Biomed Mater Res 50:35–42Google Scholar
  148. 148.
    Miyazaki T, Kim HM, Kokubo T, Kato H, Nakamura T (2001) Induction and acceleration of bonelike apatite formation on tantalum oxide gel in simulated body fluid. J Sol-Gel Sci Technol 21:83–88Google Scholar
  149. 149.
    Kato H, Nakamura T, Nishiguchi S, Matsusue Y, Kobyashi M, Miyazaki T, Kim HM, Kokubo T (2000) Bonding of alkali- and heat-treated tantalum implants to bone. J Biomed Mater Res Appl Biomater 53:28–35Google Scholar
  150. 150.
    Li PJ, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, de Groot K (1994) The role of hydrated silica, titania, and alumina in inducing apatite on implants. J Biomed Mater Res 28:7–15Google Scholar
  151. 151.
    Li P, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, Nakamura T, Yamamuro T (1992) Apatite formation induced by silica gel in a simulated body fluid. J Am Ceram Soc 75:2094–2097Google Scholar
  152. 152.
    Abe Y, Kokubo T, Yamamuro T (1990) Apatite coating on ceramics, metals and polymers utilizing a biological process. J Mater Sci Mater Med 1:233–238Google Scholar
  153. 153.
    Taguchi T, Kishida A, Akashi M (1999) Apatite formation on/in hydrogel matrices using an alternate soaking process. III. Effect of physico-chemical factors on apatite formation on/in poly(vinyl alcohol) hydrogel matrices. J Biomater Sci Polym Ed 10:795–804Google Scholar
  154. 154.
    Takemoto M, Fujibayashi S, Neo M, Suzuki J, Kokubo T, Nakamura T (2006) Bone-bonding ability of a hydroxyapatite coated zirconia–alumina nanocomposite with a microporous surface. J Biomed Mater Res 78A:693–701Google Scholar
  155. 155.
    Kim HW, Kong YM, Bae CJ, Noh YJ, Kim HE (2004) Sol-gel derived fluor-hydroxyapatite biocoatings on zirconia substrate. Biomaterials 25:2919–1926Google Scholar
  156. 156.
    Nakamura S, Takeda H, Yamashita K (2001) Proton transport polarization and depolarization of hydroxyapatite ceramics. J Appl Phys 89:5386–5392Google Scholar
  157. 157.
    Itoh S, Nakamura S, Kobayashi T, Shinomiya K, Yamashita K (2006) Effect of electrical polarization of hydroxyapatite ceramics on new bone formation. Calcif Tissue Int 78:133–142Google Scholar
  158. 158.
    Okabayashi R, Nakamura M, Okabayashi T, Tanaka Y, Nagai A, Yamashita K (2009) Efficacy of polarized hydroxyapatite and silk fibroin composite dressing gel on epidermal recovery from full-thickness skin wounds. J Biomed Mater Res Appl Biomater B 90:641–646Google Scholar
  159. 159.
    Nakamura M, Nakamura S, Sekijima Y, Niwa K, Kobayashi T, Yamashita K (2006) Role of blood coagulation components as intermediators of high osteoconductivity of electrically polarized hydroxyapatite. J Biomed Mater Res A 79:627–634Google Scholar
  160. 160.
    Nakamura M, Inuzuka M, Hashimoto K, Nagai A, Yamashita K (2012) Polarized yttria-stabilized zirconia improves durability for degradation and apatite formation. Phosphorus Res Bull 26:77–80Google Scholar
  161. 161.
    Mariappan CR, Yunos DM, Boccaccini AR, Rolling B (2009) Bioactivity of electro-thermally poled bioactive silicate glass. Acta Biomater 5:1274–1283Google Scholar
  162. 162.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38Google Scholar
  163. 163.
    Roy P, Berger S, Schmuki P (2011) Reviews: TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50:2904–2939Google Scholar
  164. 164.
    Yoko T, Kamiya K, Sakka S (1987) Photoelectrochemical properties of TiO2 films prepared by the sol-gel method. J Ceram Soc Jpn 95:150–155Google Scholar
  165. 165.
    Dislich H, Hussman E (1981) Amorphous and crystalline dip coatings obtained from organometallic solutions: procedures, chemical processes and products. Thin Solid Films 77:129–139Google Scholar
  166. 166.
    Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Formation of titanium oxide nanotube. Langmuir 14:3160–3163Google Scholar
  167. 167.
    Yun YJ, Chung JS, Kim SW, Hahn SH, Kim EJ (2004) Low-temperature coating of sol-gel anatase thin films. Mater Lett 58:3703–3706Google Scholar
  168. 168.
    Sheng YG, Liang LP, Xu Y, Wu D, Wu YH, Sun YH (2008) Low-temperature deposition of the high-performance anatase-titania optical films via a modified sol-gel route. Opt Mater 30:1310–1315Google Scholar
  169. 169.
    Daoud WA, Xin JH (2004) Low temperature sol-gel processed photocatalytic titania coating. J Sol-Gel Sci Technol 29:25–29Google Scholar
  170. 170.
    Uekawa N, Kajiwara J, Kakegawa K, Sasaki Y (2002) Low temperature synthesis and characterization of porous anatase TiO2 nanoparticles. J Colloid Interface Sci 250:285–290Google Scholar
  171. 171.
    Jensen MJ, Fuiere PA (2006) Low-temperature preparation of nanocrystalline anatase films through a sol-gel route. J Sol-Gel Sci Technol 39:229–233Google Scholar
  172. 172.
    Hu Y, Yuan CW (2005) Low-temperature preparation of photocatalytic TiO2 thin films from anatase sols. J Cryst Growth 274:563–568Google Scholar
  173. 173.
    Shirosaki Y (2009) Private communication: courtesy of Shirosaki, YGoogle Scholar
  174. 174.
    Colby MW, Osaka A, Mackenzie JD (1988) Temperature dependence of the gelation of silicon alkoxides. J Non-Cryst Solids 99:129–139Google Scholar
  175. 175.
    Li PJ, de Groot K (1993) Calcium phosphate formation within sol-gel prepared titania in vitro and in vivo. J Biomed Mater Res 27:1495–1500Google Scholar
  176. 176.
    Li PJ, Kangasniemi I, de Groot K, Kokubo T (1994) Bonelike hydroxyapatite induction by a gel-derived titania on titanium substrate. J Am Ceram Soc 77:1307–1312Google Scholar
  177. 177.
    Kumar KN, Zaspals P, Keizer K, Burggraaf AJ (1992) Drying process in the formation of sol-gel-derived TiO2 ceramic membrane. J Non-Cryst Solids 147&148:375–381Google Scholar
  178. 178.
    Grosso D, Cagnol F, de AA Soler-Illia GJ, Crepaldi EL, Ameitsch H, Brunet-Bruneau A, Bourgeois A, Sanchez C (2004) Fundamentals of mesostructuring through evaporation-induced self-assembly. Adv Funct Mater 14:309–322Google Scholar
  179. 179.
    Pätsi ME, Jautaniemi JA, Rhiala JM, Peltola TO, Kangasniemi IMO (1998) Bonding strengths of titania sol-gel-derived coatings on titanium. J Sol-Gel Sci Technol 11:55–66Google Scholar
  180. 180.
    Areva S, Lindén M (2003) Calcium phosphate formation on chemically modified titanium. In: Ben-Nissan B, Sher D, Walsh W (eds) Proceedings of the 15th international symposium on ceramic in medicine, Sydney, 2002. Key Eng Mater 240–242:465–468Google Scholar
  181. 181.
    Areva S, Peltola T, Säliynoja E, Laajalehto K, Lindén M, Rosenholm JB (2002) Effect of albumin and fibrinogen on calcium phosphate formation on sol-gel derived titania coatings in vitro. Chem Mater 14:1614–1621Google Scholar
  182. 182.
    Klinger A, Steinberg D, Kohavi D, Sela MN (1997) Mechanism of adsorption of human albumin to titanium in vitro. J Biomed Mater Res 36:387–392Google Scholar
  183. 183.
    Chen Y-L, Zhang X-F, Gon Y-D, Zhao N-M, Zeng T-Y, Song X-Q (1999) Conformational changes of fibrinogen adsorption onto hydroxyapatite and titanium oxide nanoparticles. J Colloid Interface Sci 214:38–45Google Scholar
  184. 184.
    Peltola T, Pätsi M, Rahiala H, Kangasniemi I, Yli-Urpo A (1998) Effect of aging time of sol on structure and in vitro calcium phosphate formation of sol-gel-derived titania films. J Biomed Mater Res 41:504–510Google Scholar
  185. 185.
    Jokinen M, Pätsi M, Rahiala H, Peltola T, Ritala M, Rosenholm JB (1998) Influence of sol and surface properties on in vitro bioactivity of sol-gel-derived TiO2 and TiO2-SiO2 films deposed by dip-coating method. J Biomed Mater Res 42:295–302Google Scholar
  186. 186.
    Peltola T, Jokinen M, Rahiala H, Pätsi M, Heikkilä J, Kangasniemi I, Yli-Urpo A (2000) Calcium phosphate induction by sol-gel-derived titania coatings on titanium substrates in vitro. J Biomed Mater Res 51:200–208Google Scholar
  187. 187.
    Uchida M, Kim H-M, Kokubo T, Fujibayashi S, Nakamura T (2003) Structural dependence of apatite formation on titania gels in a simulated body fluid. J Biomed Mater Res 64A:164–170Google Scholar
  188. 188.
    Areva S, Paldan H, Peltola T, Närhi T, Jokinen M, Linden M (2004) Use of sol-gel derived titania coating for direct soft tissue attachment. J Biomed Mater Res 70A:169–178Google Scholar
  189. 189.
    Rossi S, Moritz N, Tirri T, Peltola T, Areva S, Jokinen M, Happonen RP, Närhi T (2007) Comparison between sol-gel-derived anatase- and rutile-structured TiO2 coatings in soft-tissue environment. J Biomed Mater Res 82A:965–974Google Scholar
  190. 190.
    Zhao JM, Liu JF, Wu JM, Tsuru K, Hayakawa S, Osaka A (2006) Apatite formation on rutile and anatase layers derived by hydrolysis of titanylsulfate in a simulated body fluid. J Ceram Soc Japan 114:253–258Google Scholar
  191. 191.
    Harmankaya N, Karlsson J, Palmquist A, Halvarsson M, Igawa K, Andersson M, Tengvall P (2013) Raloxifene and alendronate containing thin mesoporous titanium oxide films improve implant fixation to bone. Acta Biomater 9:7064–7073Google Scholar
  192. 192.
    Liu K, Lin XL, Zhao JS (2013) Toxic effects of the interaction of titanium dioxide nanoparticles with chemicals or physical factors. Int J Nanomed 8:2509–2520Google Scholar
  193. 193.
    Shimizu K, Imai H, Hirashima H, Tsukuma K (1999) Low-temperature synthesis of anatase thin films on glass and organic substrates by direct deposition from aqueous solutions. Thin Solid Films 35:220–224Google Scholar
  194. 194.
    Wu JM, Hayakawa S, Tsuru K, Osaka A (2002) In vitro bioactivity of anatase film obtained by direct deposition from aqueous titanium tetrafluoride solutions. Thin Solid Films 414:283–288Google Scholar
  195. 195.
    Wu JM, Xiao F, Hayakawa S, Tsuru K, Takemoto S, Osaka A (2003) Bioactivity of metallic biomaterials with anatase layers deposited in acidic titanium tetrafluoride solution. J Mater Sci Mater Med 14:1027–1032Google Scholar
  196. 196.
    Xiao F, Tsuru K, Hayakawa S, Osaka A (2003) In vitro apatite deposition on titania film derived from chemical treatment of Ti substrates with an oxysulfate solution containing hydrogen peroxide at low temperature. Thin Solid Films 441:271–276Google Scholar
  197. 197.
    Hayakawa S, Liu JF, Tsuru K, Osaka A (2006) Wet deposition of titania-apatite composite in cotton fibrils. J Sol-gel Sci Technol 40:253–258Google Scholar
  198. 198.
    Wu JM, Liu JF, Hayakawa S, Tsuru K, Osaka A (2007) Low-temperature deposition of rutile film on biomaterials substrates and its ability to induce apatite deposition in vitro. J Mater Sci Mater Med 18:1529–1536Google Scholar
  199. 199.
    Kokubo T, Miyaji F, Kim HM, Nakamura T (1996) Spontaneous formation of bonelike apatite layer on chemically treated titanium metals. J Am Ceram Soc 79:1127–1129Google Scholar
  200. 200.
    Kim HM, Miyaji F, Kokubo T, Kitsugi T, Nakamura T (1996) Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res 32:409–417Google Scholar
  201. 201.
    Kim HM, Miyaji F, Kokubo T, Nakamura T (1997) Apatite-forming ability of alkali-treated Ti metal in body environment. J Ceram Soc Jpn 105:111–116Google Scholar
  202. 202.
    Kim HM, Miyaji F, Kokubo T, Nakamura T (1997) Effect of heat treatment on apatite-forming ability induced by alkali treatment. J Mater Sci Mater Med 8:341–347Google Scholar
  203. 203.
    Takadama H, Kim HM, Kokubo T, Nakamura T (2001) An X-ray photoelectron spectroscopy study of the process of apatite formation on bioactive titanium metal. J Biomed Mater Res 55:185–193Google Scholar
  204. 204.
    Takadama H, Kim HM, Kokubo T, Nakamura T (2001) TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid. J Biomed Mater Res 57:441–448Google Scholar
  205. 205.
    Fujibayashi S, Nakamura T, Nishiguchi S, Tamura J, Uchida M, Kim H-M, Kokubo T (2001) Bioactive titanium: effect of sodium removal on the bone-bonding ability of bioactive titanium prepared by alkali and heat treatment. J Biomed Mater Res 56:562–570Google Scholar
  206. 206.
    Uchida M, Kim H-M, Kokubo T, Fujibayashi S, Nakamura T (2002) Effect of water treatment on the apatite–forming ability of NaOH-treated titanium metal. J Biomed Mater Res 63:522–530Google Scholar
  207. 207.
    Takemoto M, Fujibayashi S, Neo M, Suzuki J, Matsushita T, Kokubo T, Nakamura T (2006) Osteoinductive porous titanium implants: effect of sodium removal by dilute HCl treatment. Biomaterials 27:2682–2691Google Scholar
  208. 208.
    Kawai T, Kizuki T, Takadama H, Matsushita M, Unuma H, Nakamura T, Kokubo T (2010) Apatite formation on surface titanate layer with different Na content on Ti metal. J Ceram Soc Jpn 118:19–24Google Scholar
  209. 209.
    Pattanayak DK, Yamaguchi S, Matsushita M, Kokubo T (2011) Nanostructured positively charged bioactive TiO2 layer formed on Ti metal by NaOH, acid and heat treatments. J Mater Sci Mater Med 22:1803–1812Google Scholar
  210. 210.
    Kizuki T, Takadama H, Matsushita T, Nakamura T, Kokubo T (2010) Preparation of bioactive Ti metal surface enriched with calcium ions by chemical treatment. Acta Biomater 6:2836–2842Google Scholar
  211. 211.
    Yamaguchi S, Kizuki T, Takadama H, Matsushita T, Nakamura T, Kokubo T (2012) Formation of a bioactive calcium titanate layer on gum metal by chemical treatment. J Mater Sci Mater Med 23:873–883Google Scholar
  212. 212.
    Yamaguchi S, Takadama H, Matsushita T, Nakamura T, Kokubo T (2010) Apatite-forming ability of Ti–15Zr–4Nb–4Ta alloy induced by calcium solution treatment. J Mater Sci Mater Med 21:439–444Google Scholar
  213. 213.
    Fukuda A, Takemoto M, Saito T, Fujibayashi S, Neo M, Yamaguchi S, Kizuki T, Matsushita T, Niinomi M, Kokubo T, Nakamura T (2011) Bone bonding bioactivity of Ti metal and Ti–Zr–Nb–Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments. Acta Biomater 7:1379–1386Google Scholar
  214. 214.
    Fawzy AS, Amer MA (2009) An in vitro and in vivo evaluation of bioactive titanium implants following sodium removal treatment. Dent Mater 25:48–57Google Scholar
  215. 215.
    Ravelingien M, Mullens S, Luyten J, Meynen V, Vinck E, Vervaet C, Remon JP (2009) Thermal decomposition of bioactive sodium titanate surface. Appl Surf Sci 255:9539–9542Google Scholar
  216. 216.
    Ravelingien M, Hervent AS, Mullens S, Luyten J, Vervaet C, Remon JP (2010) Influence of surface topography and pore architecture of alkali-treated titanium on in vitro apatite deposition. Appl Surf Sci 256:3693–3697Google Scholar
  217. 217.
    Aparicio S, Manero JM, Conde F, Pegueroles M, Planell JA, Vallet-Regi M, Gil FJ (2007) Acceleration of apatite nucleation on microrough bioactive titanium for bone- replacing implants. J Biomed Mater Res Part A 82:521–529Google Scholar
  218. 218.
    Kizuki T, Takadama H, Matsushita T, Nakamura T, Kokubo T (2013) Effect of Ca contamination on apatite formation in a Ti metal subjected to NaOH and heat treatments. J Mater Sci Mater Med 24:635–644Google Scholar
  219. 219.
    Kokubo T, Pattanayak DK, Yamaguchi S, Takadama H, Matsushita M, Kawai T, Takemoto M, Fujibayashi S, Nakamura T (2010) Positively charged bioactive Ti metal prepared by simple chemical and heat treatments. J R Soc Interf 7:S503–S513Google Scholar
  220. 220.
    Kawai T, Takemoto M, Fujibayashi S, Akiyama H, Yamaguchi S, Pattanayak DK, Doi K, Matsushita T, Nakamura T, Kokubo T, Matsuda S (2013) Osteoconduction of porous Ti metal enhanced by acid and heat treatments. J Mater Sci Mater Med 24:1707–1715Google Scholar
  221. 221.
    Spriano S, Brozoni M, Rosalbino F, Verné E (2005) New chemical treatment for bioactive titanium alloy with high corrosion resistance. J Mater Sci Mater Med 16:203–211Google Scholar
  222. 222.
    Wen HB, Liu Q, De Wijn JR, De Groot K, Cui FZ (1998) Preparation of bioactive microporous titanium surface by a new two-step chemical treatment. J Mater Sci Mater Med 9:121–128Google Scholar
  223. 223.
    Jonášová L, Müller FA, Helebrant A, Strnad J, Greil P (2004) Biomimetic apatite formation on chemically treated titanium. Biomaterials 25:1187–1194Google Scholar
  224. 224.
    Zhao CY, Zhu XD, Yuan T, Fan HS, Zhang XD (2010) Fabrication of biomimetic apatite coating on porous titanium and their osteointegration in femurs of dogs. Mater Sci Eng C 30:98–104Google Scholar
  225. 225.
    Eliaz N, Ritman-Hertz O, Aronov D, Weinberg E, Shenhar Y, Rosenman G, Weinreb M, Ron E (2011) The effect of surface treatments on the adhesion of electrochemically deposited hydroxyapatite coating to titanium and on its interaction with cells and bacteria. J Mater Sci Mater Med 22:1741–1752Google Scholar
  226. 226.
    Osaka A, Hayakawa S, Tsuru K, Takemoto S, Kawabe Y, Iwatani S (2001) In vitro biomimetic deposition of apatite on chemically and electrochemically treated titanium. J Aust Ceram Soc 37:1–8Google Scholar
  227. 227.
    Yang BC, Uchida M, Kim HM, Zhang XD, Kokubo T (2004) Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials 25:1003–1010Google Scholar
  228. 228.
    Liang BJ, Fujibayashi S, Neo M, Tamura J, Kim HM, Uchida M, Kokubo T, Nakamura T (2003) Histological and mechanical investigation of the bone-bonding ability of anodically oxidized titanium in rabbits. Biomaterials 24:4959–4966Google Scholar
  229. 229.
    Zhao Y, Xiong TY, Huang WH (2010) Effect of heat treatment on bioactivity of anodic titania films. Appl Surf Sci 256:3073–3076Google Scholar
  230. 230.
    Yamamoto D, Iida T, Arii K, Kuroda K, Ichino R, Okido M, Seki A (2012) Surface hydrophilicity and osteoconductivity of anodized Ti in aqueous solutions with various solute ions. Mater Trans 53:1956–1961Google Scholar
  231. 231.
    Iwai-Yoshida M, Shibata Y, Wurihan, Suzuki D, Fujisawa N, Tanimoto Y, Kamijo R, Maki K, Miyazaki T (2012) Antioxidant and osteogenic properties of anodically oxidized titanium. J Mech Behav Biomed Mater 13:230–236Google Scholar
  232. 232.
    Hori N, Iwasa F, Tsukimura N, Sugita Y, Ueno T, Kojima N, Ogawa T (2011) Effects of UV photofunctionalization on the nanotopography enhanced initial bioactivity of titanium. Acta Biomater 7:3679–3691Google Scholar
  233. 233.
    Tsukimura N, Yamada M, Iwasa F, Minamikawa H, Att W, Ueno T, Saruwatari L, Aita H, Chious WA, Ogawa T (2011) Synergistic effects of UV photofunctionalization and micro-nano hybrid topography on the biological properties of titanium. Biomaterials 32:4358–4368Google Scholar
  234. 234.
    Shibata Y, Suzuki D, Omori S, Tanaka R, Murakami A, Kataoka Y, Baba K, Kamijo R, Miyazaki T (2010) The characteristics of in vitro biological activity of titanium surfaces anodically oxidized in chloride solutions. Biomaterials 31:8546–8555Google Scholar
  235. 235.
    Att W, Hori N, Takeuchi M, Ouyang JY, Yang Y, Anpo M, Ogawa T (2009) Biomaterials 30:5352–5363Google Scholar
  236. 236.
    Khang DW, Choi J, Im YM, Kim YJ, Jang JH, Kang SS, Nam TH, Song J, Park JW (2012) Role of subnano-, nano- and submicron-surface features on osteoblast differentiation of bone marrow mesenchymal stem cells. Biomaterials 33:5997–6007Google Scholar
  237. 237.
    Tengvall P, Elwing H, Sjöqvist L, Lundström I, Bjursten LM (1989) Interaction between hydrogen peroxide and titanium: a possible role in the biocompatibility of titanium. Biomaterials 10:118–120Google Scholar
  238. 238.
    Tengvall P, Lundström I, Sjöqvist L, Elwing H, Bjursten LM (1989) Titanium-hydrogen peroxide interaction: model studies of the influence of the inflammatory response on titanium implants. Biomaterials 10:166–175Google Scholar
  239. 239.
    Ohtsuki C, Iida H, Hayakawa S, Osaka A (1997) Bioactivity of titanium treated with hydrogen peroxide solutions containing metal chlorides. J Biomed Mater Res 35:39–47Google Scholar
  240. 240.
    Ohtsuki C, Unpublished data, private communicationGoogle Scholar
  241. 241.
    Wang XX, Hayakawa S, Tsuru K, Osaka A (2000) Improvement of bioactivity of H2O2/TaCl5-treated titanium after subsequent heat treatments. J Biomed Mater Res 52:171–176Google Scholar
  242. 242.
    Kaneko S, Tsuru K, Hayakawa S, Takemoto K, Ohtsuki C, Ozaki T, Inoue H, Osaka A (2001) In vivo evaluation of bone-bonding of titanium metal chemically treated with a hydrogen peroxide solution containing tantalum chloride. Biomaterials 22:875–881Google Scholar
  243. 243.
    Kim T, Suzuki M, Ohtsuki C, Masuda K, Tamai H, Watanabe E, Osaka A, Moriya H (2003) Enhancement of bone growth in titanium fiber mesh by surface modification with hydrogen peroxide solution containing tantalum chloride. J Biomed Mater Res Part B Appl Biomater 64B:19–26Google Scholar
  244. 244.
    Laleh M, Kargar F (2011) Formation of high bioactive nanoporous titania film by hybrid surface mechanical attrition treatment. Mater Let 65:2295–2298Google Scholar
  245. 245.
    Yoneyama Y, Matsuno T, Hashimoto Y, Satoh T (2013) In vitro evaluation of H2O2 hydrothermal treatment of aged titanium surface to enhance biofunctional activity. Dent Mater J 32:115–121Google Scholar
  246. 246.
    Wang XX, Hayakawa S, Tsuru K, Osaka A (2002) Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution. Biomaterials 23:1353–1357Google Scholar
  247. 247.
    Wu JM, Hayakawa S, Tsuru K, Osaka A (2002) Crystallization of anatase from amorphous titania in hot water and in vitro biomineralization. J Ceram Soc Jpn 110:78–80Google Scholar
  248. 248.
    Wu JM, Hayakawa S, Tsuru K, Osaka A (2003) Early apatite deposition on titanium treated by hydrogen peroxide. J Aust Ceram Soc 39:36–42Google Scholar
  249. 249.
    Wu JM, Tsuru K, Hayakawa S, Osaka A (2004) Low-temperature preparation of anatase and rutile layer on titanium substrate and their ability to induce in vitro apatite deposition. J Am Ceram Soc 87:1635–1642Google Scholar
  250. 250.
    Wang XX, Hayakawa S, Tsuru K, Osaka A (2001) A comparative study of in vitro apatite deposition on heat-, H2O2, and NaOH-treated titanium surfaces. J Biomed Mater Res 54:172–178Google Scholar
  251. 251.
    Wang XX, Yan W, Hayakawa S, Tsuru K, Osaka A (2003) Apatite deposition on thermally and anodically oxidized titanium surfaces in a simulated body fluid. Biomaterials 24:4631–4637Google Scholar
  252. 252.
    Sugino A, Uetsuki K, Tsuru K, Hayakawa S, Ohtsuki C, Osaka A (2008) Gap effect on the heterogeneous nucleation of apatite on thermally oxidized titanium substrate. Key Eng Mater 361–363:621–624Google Scholar
  253. 253.
    Sugino A, Uetsuki K, Tsuru K, Hayakawa S, Osaka A, Ohtsuki C (2008) Surface topography designed to provide osteoconductivity to titanium after thermal oxidation. Mater Trans 49:428–434Google Scholar
  254. 254.
    Sugino A, Tsuru K, Hayakawa S, Kikuta K, Kawachi G, Osaka A, Ohtsuki C (2009) Induced deposition of bone-like hydroxyapatite on thermally oxidized titanium substrates using a spatial gap in a solution that mimics a body fluid. J Ceram Soc Jpn 117:515–520Google Scholar
  255. 255.
    Shozui T, Tsuru K, Hayakawa S, Osaka A (2008) Enhancement of in vitro apatite-forming ability of thermally oxidized titanium surfaces by ultraviolet irradiation. J Ceram Soc Jpn 116:530–535Google Scholar
  256. 256.
    Uetsuki K, Akasaka K, Nakai S, Shirosaki Y, Hayakawa S, Osaka A (2011) Mechanism of stimulated apatite nucleation on Titania layer by UV-irradiation and autoclaving. Presented at the 11th Asian BioCeramics symposium in conjunction with the 22nd symposium on apatite, 30 Nov–2 Dec 2011, Tsukuba, JapanGoogle Scholar
  257. 257.
    Sato K (2007) Mechanism of hydroxyapatite mineralization in biological systems. J Ceram Soc Jpn 115:124–130Google Scholar
  258. 258.
    Sato K, Kogure T, Kumagai Y, Tanaka J (2001) Crystal orientation of hydroxyapatite induced by ordered carboxyl groups. J Colloid Interf Sci 240:133–138Google Scholar
  259. 259.
    Wang Y, Azais T, Robin M, Vallée A, Catania C, Legriel P, Pehau-Armaidet G, Babonneau F, Giraud-Guille MM, Nassif N (2012) The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. Nat Mater 11:724–733Google Scholar
  260. 260.
    Nassif N, Gobeaux F, Seto J, Belamie E, Davidson P, Panine P, Mosser G, Fratzl P, Giraud Guille MM (2010) Self-assembled collagen-apatite matrix with bone-like hierarchy. Chem Mater 22:3307–3309Google Scholar
  261. 261.
    Landis WJ, Song MJ, Leith A, McEwen L, McEwen BF (1993) Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. J Struct Biol 110:39–54Google Scholar
  262. 262.
    Landis W, Hodgens K, Song MJ, Arena J, Kiyonaga S, Marko M, Owen C, McEwen BF (1996) Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging. J Struct Biol 117:24–35Google Scholar
  263. 263.
    Bewernitz MA, Gevayerm D, Long J, Cölfen H, Gower LB (2012) A metastable liquid precursor phase of calcium carbonate and its interactions with polyaspartate. Faraday Discuss 159:291–312Google Scholar
  264. 264.
    Hu Y, Mackenzie JD (1992) Rubber-like elasticity of organically modified silicates. J Mater Sci 27:4415–4420Google Scholar
  265. 265.
    Tsuru K, Ohtsuki C, Osaka A, Iwamoto T, Mackenzie JD (1997) Bioactivity of sol-gel derived organically modified silicates. J Mater Sci Mater Med 8:157–161Google Scholar
  266. 266.
    Yabuta T, Bescher EP, Mackenzie JD, Tsuru K, Hayakawa S, Osaka A (2003) Synthesis of PDMS-based porous materials for biomedical applications. J Sol-gel Sci Tech 26:1219–1222Google Scholar
  267. 267.
    Kataoka K, Nagao Y, Nukui T, Akiyama I, Tsuru K, Hayakawa S, Osaka A, Huh NH (2005) An organic-inorganic hybrid scaffold for the culture of HepG2 cells in a bioreactor. Biomaterials 26:2509–2516Google Scholar
  268. 268.
    Yoshioka T, Tsuru K, Hayakawa S, Osaka A (2004) Preparation of organotitanium molecular layers for biomedical applications. Mater Sci Eng C 24:901–905Google Scholar
  269. 269.
    Curcio M, Altimari I, Spizzirri UG, Cirillo G, Vittorio O, Puoci F, Picci N, Iemma F (2013) Biodegradable gelatin-based nanospheres as pH-responsive drug delivery systems. J Nanopart Res 15:1581–1592Google Scholar
  270. 270.
    Mahony O, Tsigkou O, Ionescu C, Minelli C, Ling L, Hanly R, Smith ME, Stevens MM, Jones JR (2010) Silica-gelatin hybrids with tailorable degradation and mechanical properties for tissue regeneration. Adv Funct Mater 20:3835–3845Google Scholar
  271. 271.
    Lu HX, Oh HH, Kawazoe N, Yamagishi K, Chen G (2012) PLLA–collagen and PLLA–gelatin hybrid scaffolds with funnel-like porous structure for skin tissue engineering. Sci Technol Adv Mater 13:064210. doi: 10.1088/1468-6996/13/6/064210 Google Scholar
  272. 272.
    Ren L, Tsuru K, Hayakawa S, Osaka A (2002) Novel approach to fabricate porous gelatin–siloxane hybrids for bone tissue engineering. Biomaterials 23:4765–4773Google Scholar
  273. 273.
    Ren L, Tsuru K, Hayakawa S, Osaka A (2001) Incorporation of Ca2+ ions in gelatin-siloxane hybrids through a sol-gel process. J Ceram Soc Jpn 109:406–411Google Scholar
  274. 274.
    Wüstneck R, Buder E, Wetzel R, Hermel H (1989) The modification of the triple helical structure of gelatin in aqueous solution, 3: the influence of cationic surfactants. Colloid Polym Sci 267:429–435Google Scholar
  275. 275.
    Deguchi K, Tsuru K, Hayashi T, Takaishi M, Nagahara M, Nagotani S, Sehara Y, Jin G, Zhang H, Hayakawa S, Shoji M, Miyazaki M, Osaka A, Huh NH, Abe K (2006) Implantation of a new porous gelatin–siloxane hybrid into a brain lesion as a potential scaffold for tissue regeneration. J Cereb Blood Flow Metab 26:1263–1273Google Scholar
  276. 276.
    Munoz-Pinto DJ, McMahon RE, Kanzelberger MA, Jimenez-Vergara AC, Grunlan MA, Hahn MS (2010) Inorganic–organic hybrid scaffolds for osteochondral regeneration. J Biomed Mater Res 94A:112–121Google Scholar
  277. 277.
    Thibault RA, Mikos AG, Kasper FK (2013) Scaffold/extracellular matrix hybrid constructs for bone-tissue engineering. Adv Healthcare Mater 2:13–24Google Scholar
  278. 278.
    Jayasuriya AC, Bhat A (2010) Fabrication and characterization of novel hybrid organic/ inorganic microparticles to apply in bone regeneration. J Biomed Mater Res 93A:1280–1288Google Scholar
  279. 279.
    Gómez-Romero P, Sanches C, Hüsing N, Schubert U (2004) Porous inorganic-organic hybrid materials. In: Functional hybrid materials. Wiley, WeinheimGoogle Scholar
  280. 280.
    Shirosaki Y, Osaka A, Tsuru K, Hayakawa S (2012) Inorganic-organic sol-gel hybrids. In: Bio-glasses: an introduction. Wiley, ChichesterGoogle Scholar
  281. 281.
    Kickelbick G, Hüsing N (2007) Hybrid materials: synthesis, characterization, and applications. Wiley-VCH, WeinheimGoogle Scholar
  282. 282.
    Shirosaki Y, Tsuru K, Hayakawa S, Osaka A, Lopes MA, Santos JD, Costa MA, Fernandes MH (2009) Physical, chemical and in vitro biological profile of chitosan hybrid membrane as a function of organosiloxane concentration. Acta Biomater 5:346–355Google Scholar
  283. 283.
    Shirosaki Y, Okayama T, Tsuru K, Hayakawa S, Osaka A (2008) Synthesis and cytocompatibility of porous chitosan-silicate hybrids for tissue engineering scaffold application. Chem Eng J 137:122–128Google Scholar
  284. 284.
    Mauricio AC (2009) Unpublished data, private communicationGoogle Scholar
  285. 285.
    Amado S, Simoes MJ, Armada da Silva PAS, Luis AL, Shirosaki Y, Lopes MA, Santos JD et al (2008) Use of hybrid chitosan membranes and N1E-115 cells for promoting nerve regeneration in an axonotmesis rat model. Biomaterials 29:4409–4419Google Scholar
  286. 286.
    Simoes MJ, Amado S, Gärtner A, Armada da Silva PAS, Raimondo S, Vieira M, Luis AL, Shirosaki Y et al (2010) Italian. J Anat Embryol 115:175–195Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Faculty of EngineeringOkayama UniversityTsushimaJapan

Personalised recommendations