Skip to main content

Fundamental Structure and Properties of Enamel, Dentin and Cementum

  • Chapter
  • First Online:
Advances in Calcium Phosphate Biomaterials

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 2))

Abstract

In this chapter, the fundamental structure of dental tissue at different scale levels and its concurrent role in determining the mechanical properties of the tooth are discussed. The main emphasis is on the role of the organic phase in determining the mechanical properties of enamel and dentin. In this regard, the results of nanoindentation experiments following different treatments of enamel and dentin are presented. These treatments include selective removal of matrix proteins and water of enamel and dentin tissue. The findings indicate that peptides and organic remnants not only play a significant role in the formation and structure of enamel and dentin, but also they regulate the mechanical response and functional integrity of the tooth tissue. In addition, these findings provide a basis for further investigation of the adverse effect of some current clinical treatments, such as bleaching, on the health and properties of dental tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. LeGeros RZ (1990) Calcium phosphates in oral biology and medicine. Monogr Oral Sci 15:2

    Google Scholar 

  2. Nanci A (2007) Ten Cate’s oral histology: development, structure and function. Mosby, St. Louis

    Google Scholar 

  3. Kahler B, Swain MV, Moule A (2003) Fracture-toughening mechanisms responsible for differences in work to fracture of hydrated and dehydrated dentine. J Biomech 36(2):229–237

    Article  Google Scholar 

  4. Zeichner-David M (2001) Is there more to enamel matrix proteins than biomineralization? Matrix Biol 20(5):307–316

    Article  Google Scholar 

  5. Smith C, Pompura J, Borenstein S, Fazel A, Nanci A (1989) Degradation and loss of matrix proteins from developing enamel. Anat Rec 224(2):292–316

    Article  Google Scholar 

  6. Bechtle S, Habelitz S, Klocke A, Fett T, Schneider GA (2010) The fracture behaviour of dental enamel. Biomaterials 31(2):375–384

    Article  Google Scholar 

  7. Bechtle S, Özcoban H, Lilleodden ET, Huber N, Schreyer A, Swain MV, Schneider GA (2012) Hierarchical flexural strength of enamel: transition from brittle to damage-tolerant behaviour. J R Soc Interface 9(71):1265–1274

    Article  Google Scholar 

  8. Berkovitz BK, Holland GR, Moxham B (2002) Oral anatomy, embryology and histology. Mosby, Edinburgh

    Google Scholar 

  9. White S, Luo W, Paine M, Fong H, Sarikaya M, Snead M (2001) Biological organization of hydroxyapatite crystallites into a fibrous continuum toughens and controls anisotropy in human enamel. J Dent Res 80(1):321–326

    Article  Google Scholar 

  10. Schroeder HN (1991) Oral structural biology: embryology, structure and function of normal hard and soft tissues of the oral cavity and temporomandibular joints. Thieme Medical Publisher, New York

    Google Scholar 

  11. Bath-Balogh M, Fehrenbach MJ, Thomas P (1997) Illustrated dental embryology, histology, and anatomy. Saunders, St. Louis, Philadelphia

    Google Scholar 

  12. Avery JK, Steele PF, Avery N (2002) Oral development and histology. Thieme, New York

    Google Scholar 

  13. Hu CC, Fukae M, Uchida T, Qian Q, Zhang CH, Ryu OH, Simmer JP (1997) Sheathlin: cloning, cDNA/polypeptide sequences, and immunolocalization of porcine enamel sheath proteins. J Dent Res 76(2):648–657

    Article  Google Scholar 

  14. Klein JP, Schöller M, Frank RM (1982) Soluble and insoluble proteins of normal human mature enamel. Arch Oral Biol 27(2):133–139

    Article  Google Scholar 

  15. Xu HHK, Smith DT, Jahanmir S, Romberg E, Kelly JR, Thompson VP, Rekow ED (1998) Indentation damage and mechanical properties of human enamel and dentin. J Dent Res 77(3):472–480

    Article  Google Scholar 

  16. He LH, Swain MV (2008) Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics. J Mech Behav Biomed Mater 1(1):18–29

    Article  Google Scholar 

  17. Bertassoni LE, Orgel JP, Antipova O, Swain MV (2012) The dentin organic matrix–limitations of restorative dentistry hidden on the nanometer scale. Acta Biomater 8(7):2419

    Article  Google Scholar 

  18. Goldberg M, Takagi M (1993) Dentine proteoglycans: composition, ultrastructure and functions. Histochem J 25(11):781–806

    Article  Google Scholar 

  19. Boskey AL (1991) The role of extracellular matrix components in dentin mineralization. Crit Rev Oral Biol Med 2(3):369–387

    Google Scholar 

  20. Bertassoni LE, Stankoska K, Swain MV (2012) Insights into the structure and composition of the peritubular dentin organic matrix and the lamina limitans. Micron 43(2):229–236

    Article  Google Scholar 

  21. Gotliv B-A, Veis A (2007) Peritubular dentin, a vertebrate apatitic mineralized tissue without collagen: role of a phospholipid-proteolipid complex. Calcif Tissue Int 81(3):191–205

    Article  Google Scholar 

  22. Gotliv B-A, Robach JS, Veis A (2006) The composition and structure of bovine peritubular dentin: mapping by time of flight secondary ion mass spectroscopy. J Struct Biol 156(2):320–333

    Article  Google Scholar 

  23. Habelitz S, Rodriguez B, Marshall S, Marshall G, Kalinin S, Gruverman A (2007) Peritubular dentin lacks piezoelectricity. J Dent Res 86(9):908–1011

    Article  Google Scholar 

  24. Bertassoni LE (2012) Nanomechanical and nanostructural properties of human dentine: an improved understanding of the role of proteoglycans. University of Sydney, Sydney

    Google Scholar 

  25. Marshall GW Jr, Marshall SJ, Kinney JH, Balooch M (1997) The dentin substrate: structure and properties related to bonding. J Dent 25(6):441–458

    Article  Google Scholar 

  26. Imbeni V, Kruzic J, Marshall G, Marshall S, Ritchie R (2005) The dentin–enamel junction and the fracture of human teeth. Nat Mater 4(3):229–232

    Article  Google Scholar 

  27. Oyen ML (2010) Handbook of nanoindentation: with biological applications. Pan Stanford Publishing, Singapore

    Book  Google Scholar 

  28. Haque F (2003) Application of nanoindentation development of biomedical to materials. Surf Eng 19(4):255–268

    Article  Google Scholar 

  29. Lucas PW (2004) Dental functional morphology: how teeth work. Cambridge University Press, Cambridge

    Book  Google Scholar 

  30. Oliver WC, Pharr GM (1992) Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583

    Article  Google Scholar 

  31. Haines D (1968) Physical properties of human tooth enamel and enamel sheath material under load. J Biomech 1(2):117–125

    Article  Google Scholar 

  32. Habelitz S, Marshall SJ, Marshall GW Jr, Balooch M (2001) Mechanical properties of human dental enamel on the nanometre scale. Arch Oral Biol 46:173–183

    Article  Google Scholar 

  33. Cuy JL, Mann AB, Livi KJ, Teaford MF, Weihs TP (2002) Nanoindentation mapping of the mechanical properties of human molar tooth enamel. Arch Oral Biol 47:281–291

    Article  Google Scholar 

  34. He LH (2008) Mechanical behaviour of human enamel and the relationship to its structural and compositional characteristics. University of Sydney, Sydney

    Google Scholar 

  35. He LH, Swain MV (2007) Enamel—a “metallic-like” deformable biocomposite. J Dent 35(5):431–437

    Article  Google Scholar 

  36. Schneider G, He LH, Swain M (2008) Viscous flow model of creep in enamel. J Appl Phys 103(1):014701–014705

    Article  Google Scholar 

  37. He LH, Swain MV (2007) Energy absorption characterization of human enamel using nanoindentation. J Biomed Mater Res A 81(2):484–492

    Article  Google Scholar 

  38. Fox P (1980) The toughness of tooth enamel, a natural fibrous composite. J Mater Sci 15(12):3113–3121

    Article  Google Scholar 

  39. Smith BL, Schäffer TE, Viani M, Thompson JB, Frederick NA, Kindt J et al (1999) Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399(6738):761–763

    Article  Google Scholar 

  40. Macho GA, Jiang Y, Spears IR (2003) Enamel microstructure—a truly three-dimensional structure. J Hum Evol 45(1):81–90

    Article  Google Scholar 

  41. He LH, Swain MV (2007) Influence of environment on the mechanical behaviour of mature human enamel. Biomaterials 28(30):4512–4520

    Article  Google Scholar 

  42. Darling A, Mortimer K, Poole D, Ollis W (1961) Molecular sieve behaviour of normal and carious human dental enamel. Arch Oral Biol 5(3):251–273

    Article  Google Scholar 

  43. Klemm W (1990) Dehydration: a new alcohol theory. Alcohol l7(1):49–59

    Article  Google Scholar 

  44. Klemm W (1998) Biological water and its role in the effects of alcohol. Alcohol 15(3):249–267

    Article  Google Scholar 

  45. Catanese J, Featherstone J, Keaveny TM (1999) Characterization of the mechanical and ultrastructural properties of heat‐treated cortical bone for use as a bone substitute. J Biomed Mater Res 45(4):327–336

    Article  Google Scholar 

  46. Holcomb D, Young R (1980) Thermal decomposition of human tooth enamel. Calcif Tissue Int 31(1):189–201

    Article  Google Scholar 

  47. He LH, Fujisawa N, Swain MV (2006) Elastic modulus and stress-strain response of human enamel by nanoindentation. Biomaterials 27:4388–4398

    Article  Google Scholar 

  48. Dahl J, Pallesen U (2003) Tooth bleaching—a critical review of the biological aspects. Crit Rev Oral Biol Med 14(4):292–304

    Article  Google Scholar 

  49. Minoux M, Serfaty R (2008) Vital tooth bleaching: biologic adverse effects-a review. Quintessence Int 39(8):645–659

    Google Scholar 

  50. White DJ, Kozak KM, Zoladz JR, Duschner HJ, Götz H (2004) Effects of Crest Whitestrips bleaching on subsurface microhardness and ultrastructure of tooth enamel and coronal dentin. Am J Dent 17(1):5

    Google Scholar 

  51. Sasaki RT, Arcanjo AJ, Flório FM, Basting RT (2009) Micromorphology and microhardness of enamel after treatment with home-use bleaching agents containing 10 % carbamide peroxide and 7.5 % hydrogen peroxide. J Appl Oral Sci 17(6):611–666

    Article  Google Scholar 

  52. Götz H, Duschner H, White DJ, Klukowska MA (2007) Effects of elevated hydrogen peroxide ‘strip’ bleaching on surface and subsurface enamel including subsurface histomorphology, micro-chemical composition and fluorescence changes. J Dent 35(6):457–466

    Article  Google Scholar 

  53. Faraoni-Romano JJ, Turssi CP, Serra MC (2009) Effect of a 10 % carbamide peroxide on wear resistance of enamel and dentine: in situ study. J Dent 37(4):273–278

    Article  Google Scholar 

  54. Götz H, Klukowska MA, Duschner H, White DJ (2006) Physical, morphological, and micro-Raman chemical studies on bleaching strip effects on enamel, coronal dentin, and root dentin. J Clin Dent 18(4):112–119

    Google Scholar 

  55. Azer SS, Machado C, Sanchez E, Rashid R (2009) Effect of home bleaching systems on enamel nanohardness and elastic modulus. J Dent 37(3):185–190

    Article  Google Scholar 

  56. Hairul Nizam B, Lim C, Chng H, Yap A (2005) Nanoindentation study of human premolars subjected to bleaching agent. J Biomech 38(11):2204–2211

    Article  Google Scholar 

  57. Zimmerman B, Datko L, Cupelli M, Alapati S, Dean D, Kennedy M (2010) Alteration of dentin–enamel mechanical properties due to dental whitening treatments. J Mech Behav Biomed Mater 3(4):339–346

    Article  Google Scholar 

  58. Elfallah H (2013) The effect of tooth bleaching agents on mechanical properties and protein contents of dental enamel. University of Sydney, Sydney

    Google Scholar 

  59. Poolthong S (1998) Determination of the mechanical properties of enamel, dentine and cementum by an ultra micro-indentation system. University of Sydney, Sydney

    Google Scholar 

  60. Mahoney E, Holt A, Swain M, Kilpatrick N (2000) The hardness and modulus of elasticity of primary molar teeth: an ultra-micro-indentation study. J Dent 28:589–594

    Article  Google Scholar 

  61. Poolthong S, Swain M, Sumii T, Mori T (eds) (1998) Effect of tubule orientation on some mechanical properties of dentine. J Dent Res. American Association for Dental Research, Alexandria

    Google Scholar 

  62. Poolthong S, Low D, Swain M, Sumii T, Mori T (eds) (1998) Prediction of positional dependence of mechanical properties of dentine. J Dent Res. American Association for Dental Research, Alexandria

    Google Scholar 

  63. Kinney J, Balooch M, Marshall S, Marshall G Jr, Weihs T (1996) Atomic force microscope measurements of the hardness and elasticity of peritubular and intertubular human dentin. J Biomech Eng 118(1):133–135

    Article  Google Scholar 

  64. Angker L, Swain MV, Kilpatrick N (2003) Micro-mechanical characterisation of the properties of primary tooth dentine. J Dent 31(4):261–267

    Article  Google Scholar 

  65. Arola D, Reprogel R (2005) Effects of aging on the mechanical behavior of human dentin. Biomaterials 26(18):4051–4061

    Article  Google Scholar 

  66. Guidoni G, Denkmayr J, Schöberl T, Jäger I (2006) Nanoindentation in teeth: influence of experimental conditions on local mechanical properties. Philos Mag 86(33–35):5705–5714

    Article  Google Scholar 

  67. Kinney J, Marshall S, Marshall G (2003) The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature. Crit Rev Oral Biol Med 14(1):13–29

    Article  Google Scholar 

  68. Wei B, Zhang T, Li W, Xing D, Zhang L, Wang Y (2005) Indentation creep behavior in Ce-based bulk metallic glasses at room temperature. Mater Trans 46(12):2959–2962

    Article  Google Scholar 

  69. He LH, Swain MV (2009) Nanoindentation creep behavior of human enamel. J Biomed Mater Res A 91(2):352–359

    Article  Google Scholar 

  70. Bushby A, Ferguson V, Boyde A (2004) Nanoindentation of bone: Comparison of specimens tested in liquid and embedded in polymethylmethacrylate. J Mater Res 19(01):249–259

    Google Scholar 

  71. Bertassoni LE, Swain MV (2012) Influence of hydration on nanoindentation induced energy expenditure of dentin. J Biomech 45(9):1679–1683

    Article  Google Scholar 

  72. Kinney J, Habelitz S, Marshall S, Marshall G (2003) The importance of intrafibrillar mineralization of collagen on the mechanical properties of dentin. J Dent Res 82(12):957–9561

    Article  Google Scholar 

  73. Ho SP, Sulyanto RM, Marshall SJ, Marshall GW (2005) The cementum–dentin junction also contains glycosaminoglycans and collagen fibrils. J Struct Biol 151(1):69–78

    Article  Google Scholar 

  74. Herring SW (2012) Biomechanics of teeth in bone: function, movement, and prosthetic rehabilitation. In: McCauley LK, Somerman MJ (eds) Mineralized tissue in oral and craniofacial science: biological principles and clinical correlates, 1st edn. Wiley, Ames, pp 255–268

    Google Scholar 

  75. Malek S, Darendeliler MA, Swain MV (2001) Physical properties of root cementum: Part I. A new method for 3-dimensional evaluation. Am J Orthod Dentofacial Orthop 120(2):198–208

    Article  Google Scholar 

  76. Ho S, Balooch M, Goodis H, Marshall G, Marshall S (2004) Ultrastructure and nanomechanical properties of cementum dentin junction. J Biomed Mater Res A 68(2):343–351

    Article  Google Scholar 

  77. Malek S, Darendeliler MA, Rex T, Kharbanda OP, Srivicharnkul P, Swain MV (2003) Physical properties of root cementum: Part 2. Effect of different storage methods. Am J Orthod Dentofacial Orthop 124(5):561–570

    Article  Google Scholar 

  78. Chutimanutskul W, Darendeliler MA, Shen G, Petocz P, Swain M (2006) Changes in the physical properties of human premolar cementum after application of 4 weeks of controlled orthodontic forces. Eur J Orthod 28(4):313–318

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge and remember the late Dr Lihong He, whose data and scientific work in this area helped us to write this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Swain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shahmoradi, M., Bertassoni, L.E., Elfallah, H.M., Swain, M. (2014). Fundamental Structure and Properties of Enamel, Dentin and Cementum. In: Ben-Nissan, B. (eds) Advances in Calcium Phosphate Biomaterials. Springer Series in Biomaterials Science and Engineering, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53980-0_17

Download citation

Publish with us

Policies and ethics