Abstract
In this chapter, the fundamental structure of dental tissue at different scale levels and its concurrent role in determining the mechanical properties of the tooth are discussed. The main emphasis is on the role of the organic phase in determining the mechanical properties of enamel and dentin. In this regard, the results of nanoindentation experiments following different treatments of enamel and dentin are presented. These treatments include selective removal of matrix proteins and water of enamel and dentin tissue. The findings indicate that peptides and organic remnants not only play a significant role in the formation and structure of enamel and dentin, but also they regulate the mechanical response and functional integrity of the tooth tissue. In addition, these findings provide a basis for further investigation of the adverse effect of some current clinical treatments, such as bleaching, on the health and properties of dental tissue.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
LeGeros RZ (1990) Calcium phosphates in oral biology and medicine. Monogr Oral Sci 15:2
Nanci A (2007) Ten Cate’s oral histology: development, structure and function. Mosby, St. Louis
Kahler B, Swain MV, Moule A (2003) Fracture-toughening mechanisms responsible for differences in work to fracture of hydrated and dehydrated dentine. J Biomech 36(2):229–237
Zeichner-David M (2001) Is there more to enamel matrix proteins than biomineralization? Matrix Biol 20(5):307–316
Smith C, Pompura J, Borenstein S, Fazel A, Nanci A (1989) Degradation and loss of matrix proteins from developing enamel. Anat Rec 224(2):292–316
Bechtle S, Habelitz S, Klocke A, Fett T, Schneider GA (2010) The fracture behaviour of dental enamel. Biomaterials 31(2):375–384
Bechtle S, Özcoban H, Lilleodden ET, Huber N, Schreyer A, Swain MV, Schneider GA (2012) Hierarchical flexural strength of enamel: transition from brittle to damage-tolerant behaviour. J R Soc Interface 9(71):1265–1274
Berkovitz BK, Holland GR, Moxham B (2002) Oral anatomy, embryology and histology. Mosby, Edinburgh
White S, Luo W, Paine M, Fong H, Sarikaya M, Snead M (2001) Biological organization of hydroxyapatite crystallites into a fibrous continuum toughens and controls anisotropy in human enamel. J Dent Res 80(1):321–326
Schroeder HN (1991) Oral structural biology: embryology, structure and function of normal hard and soft tissues of the oral cavity and temporomandibular joints. Thieme Medical Publisher, New York
Bath-Balogh M, Fehrenbach MJ, Thomas P (1997) Illustrated dental embryology, histology, and anatomy. Saunders, St. Louis, Philadelphia
Avery JK, Steele PF, Avery N (2002) Oral development and histology. Thieme, New York
Hu CC, Fukae M, Uchida T, Qian Q, Zhang CH, Ryu OH, Simmer JP (1997) Sheathlin: cloning, cDNA/polypeptide sequences, and immunolocalization of porcine enamel sheath proteins. J Dent Res 76(2):648–657
Klein JP, Schöller M, Frank RM (1982) Soluble and insoluble proteins of normal human mature enamel. Arch Oral Biol 27(2):133–139
Xu HHK, Smith DT, Jahanmir S, Romberg E, Kelly JR, Thompson VP, Rekow ED (1998) Indentation damage and mechanical properties of human enamel and dentin. J Dent Res 77(3):472–480
He LH, Swain MV (2008) Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics. J Mech Behav Biomed Mater 1(1):18–29
Bertassoni LE, Orgel JP, Antipova O, Swain MV (2012) The dentin organic matrix–limitations of restorative dentistry hidden on the nanometer scale. Acta Biomater 8(7):2419
Goldberg M, Takagi M (1993) Dentine proteoglycans: composition, ultrastructure and functions. Histochem J 25(11):781–806
Boskey AL (1991) The role of extracellular matrix components in dentin mineralization. Crit Rev Oral Biol Med 2(3):369–387
Bertassoni LE, Stankoska K, Swain MV (2012) Insights into the structure and composition of the peritubular dentin organic matrix and the lamina limitans. Micron 43(2):229–236
Gotliv B-A, Veis A (2007) Peritubular dentin, a vertebrate apatitic mineralized tissue without collagen: role of a phospholipid-proteolipid complex. Calcif Tissue Int 81(3):191–205
Gotliv B-A, Robach JS, Veis A (2006) The composition and structure of bovine peritubular dentin: mapping by time of flight secondary ion mass spectroscopy. J Struct Biol 156(2):320–333
Habelitz S, Rodriguez B, Marshall S, Marshall G, Kalinin S, Gruverman A (2007) Peritubular dentin lacks piezoelectricity. J Dent Res 86(9):908–1011
Bertassoni LE (2012) Nanomechanical and nanostructural properties of human dentine: an improved understanding of the role of proteoglycans. University of Sydney, Sydney
Marshall GW Jr, Marshall SJ, Kinney JH, Balooch M (1997) The dentin substrate: structure and properties related to bonding. J Dent 25(6):441–458
Imbeni V, Kruzic J, Marshall G, Marshall S, Ritchie R (2005) The dentin–enamel junction and the fracture of human teeth. Nat Mater 4(3):229–232
Oyen ML (2010) Handbook of nanoindentation: with biological applications. Pan Stanford Publishing, Singapore
Haque F (2003) Application of nanoindentation development of biomedical to materials. Surf Eng 19(4):255–268
Lucas PW (2004) Dental functional morphology: how teeth work. Cambridge University Press, Cambridge
Oliver WC, Pharr GM (1992) Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583
Haines D (1968) Physical properties of human tooth enamel and enamel sheath material under load. J Biomech 1(2):117–125
Habelitz S, Marshall SJ, Marshall GW Jr, Balooch M (2001) Mechanical properties of human dental enamel on the nanometre scale. Arch Oral Biol 46:173–183
Cuy JL, Mann AB, Livi KJ, Teaford MF, Weihs TP (2002) Nanoindentation mapping of the mechanical properties of human molar tooth enamel. Arch Oral Biol 47:281–291
He LH (2008) Mechanical behaviour of human enamel and the relationship to its structural and compositional characteristics. University of Sydney, Sydney
He LH, Swain MV (2007) Enamel—a “metallic-like” deformable biocomposite. J Dent 35(5):431–437
Schneider G, He LH, Swain M (2008) Viscous flow model of creep in enamel. J Appl Phys 103(1):014701–014705
He LH, Swain MV (2007) Energy absorption characterization of human enamel using nanoindentation. J Biomed Mater Res A 81(2):484–492
Fox P (1980) The toughness of tooth enamel, a natural fibrous composite. J Mater Sci 15(12):3113–3121
Smith BL, Schäffer TE, Viani M, Thompson JB, Frederick NA, Kindt J et al (1999) Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399(6738):761–763
Macho GA, Jiang Y, Spears IR (2003) Enamel microstructure—a truly three-dimensional structure. J Hum Evol 45(1):81–90
He LH, Swain MV (2007) Influence of environment on the mechanical behaviour of mature human enamel. Biomaterials 28(30):4512–4520
Darling A, Mortimer K, Poole D, Ollis W (1961) Molecular sieve behaviour of normal and carious human dental enamel. Arch Oral Biol 5(3):251–273
Klemm W (1990) Dehydration: a new alcohol theory. Alcohol l7(1):49–59
Klemm W (1998) Biological water and its role in the effects of alcohol. Alcohol 15(3):249–267
Catanese J, Featherstone J, Keaveny TM (1999) Characterization of the mechanical and ultrastructural properties of heat‐treated cortical bone for use as a bone substitute. J Biomed Mater Res 45(4):327–336
Holcomb D, Young R (1980) Thermal decomposition of human tooth enamel. Calcif Tissue Int 31(1):189–201
He LH, Fujisawa N, Swain MV (2006) Elastic modulus and stress-strain response of human enamel by nanoindentation. Biomaterials 27:4388–4398
Dahl J, Pallesen U (2003) Tooth bleaching—a critical review of the biological aspects. Crit Rev Oral Biol Med 14(4):292–304
Minoux M, Serfaty R (2008) Vital tooth bleaching: biologic adverse effects-a review. Quintessence Int 39(8):645–659
White DJ, Kozak KM, Zoladz JR, Duschner HJ, Götz H (2004) Effects of Crest Whitestrips bleaching on subsurface microhardness and ultrastructure of tooth enamel and coronal dentin. Am J Dent 17(1):5
Sasaki RT, Arcanjo AJ, Flório FM, Basting RT (2009) Micromorphology and microhardness of enamel after treatment with home-use bleaching agents containing 10 % carbamide peroxide and 7.5 % hydrogen peroxide. J Appl Oral Sci 17(6):611–666
Götz H, Duschner H, White DJ, Klukowska MA (2007) Effects of elevated hydrogen peroxide ‘strip’ bleaching on surface and subsurface enamel including subsurface histomorphology, micro-chemical composition and fluorescence changes. J Dent 35(6):457–466
Faraoni-Romano JJ, Turssi CP, Serra MC (2009) Effect of a 10 % carbamide peroxide on wear resistance of enamel and dentine: in situ study. J Dent 37(4):273–278
Götz H, Klukowska MA, Duschner H, White DJ (2006) Physical, morphological, and micro-Raman chemical studies on bleaching strip effects on enamel, coronal dentin, and root dentin. J Clin Dent 18(4):112–119
Azer SS, Machado C, Sanchez E, Rashid R (2009) Effect of home bleaching systems on enamel nanohardness and elastic modulus. J Dent 37(3):185–190
Hairul Nizam B, Lim C, Chng H, Yap A (2005) Nanoindentation study of human premolars subjected to bleaching agent. J Biomech 38(11):2204–2211
Zimmerman B, Datko L, Cupelli M, Alapati S, Dean D, Kennedy M (2010) Alteration of dentin–enamel mechanical properties due to dental whitening treatments. J Mech Behav Biomed Mater 3(4):339–346
Elfallah H (2013) The effect of tooth bleaching agents on mechanical properties and protein contents of dental enamel. University of Sydney, Sydney
Poolthong S (1998) Determination of the mechanical properties of enamel, dentine and cementum by an ultra micro-indentation system. University of Sydney, Sydney
Mahoney E, Holt A, Swain M, Kilpatrick N (2000) The hardness and modulus of elasticity of primary molar teeth: an ultra-micro-indentation study. J Dent 28:589–594
Poolthong S, Swain M, Sumii T, Mori T (eds) (1998) Effect of tubule orientation on some mechanical properties of dentine. J Dent Res. American Association for Dental Research, Alexandria
Poolthong S, Low D, Swain M, Sumii T, Mori T (eds) (1998) Prediction of positional dependence of mechanical properties of dentine. J Dent Res. American Association for Dental Research, Alexandria
Kinney J, Balooch M, Marshall S, Marshall G Jr, Weihs T (1996) Atomic force microscope measurements of the hardness and elasticity of peritubular and intertubular human dentin. J Biomech Eng 118(1):133–135
Angker L, Swain MV, Kilpatrick N (2003) Micro-mechanical characterisation of the properties of primary tooth dentine. J Dent 31(4):261–267
Arola D, Reprogel R (2005) Effects of aging on the mechanical behavior of human dentin. Biomaterials 26(18):4051–4061
Guidoni G, Denkmayr J, Schöberl T, Jäger I (2006) Nanoindentation in teeth: influence of experimental conditions on local mechanical properties. Philos Mag 86(33–35):5705–5714
Kinney J, Marshall S, Marshall G (2003) The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature. Crit Rev Oral Biol Med 14(1):13–29
Wei B, Zhang T, Li W, Xing D, Zhang L, Wang Y (2005) Indentation creep behavior in Ce-based bulk metallic glasses at room temperature. Mater Trans 46(12):2959–2962
He LH, Swain MV (2009) Nanoindentation creep behavior of human enamel. J Biomed Mater Res A 91(2):352–359
Bushby A, Ferguson V, Boyde A (2004) Nanoindentation of bone: Comparison of specimens tested in liquid and embedded in polymethylmethacrylate. J Mater Res 19(01):249–259
Bertassoni LE, Swain MV (2012) Influence of hydration on nanoindentation induced energy expenditure of dentin. J Biomech 45(9):1679–1683
Kinney J, Habelitz S, Marshall S, Marshall G (2003) The importance of intrafibrillar mineralization of collagen on the mechanical properties of dentin. J Dent Res 82(12):957–9561
Ho SP, Sulyanto RM, Marshall SJ, Marshall GW (2005) The cementum–dentin junction also contains glycosaminoglycans and collagen fibrils. J Struct Biol 151(1):69–78
Herring SW (2012) Biomechanics of teeth in bone: function, movement, and prosthetic rehabilitation. In: McCauley LK, Somerman MJ (eds) Mineralized tissue in oral and craniofacial science: biological principles and clinical correlates, 1st edn. Wiley, Ames, pp 255–268
Malek S, Darendeliler MA, Swain MV (2001) Physical properties of root cementum: Part I. A new method for 3-dimensional evaluation. Am J Orthod Dentofacial Orthop 120(2):198–208
Ho S, Balooch M, Goodis H, Marshall G, Marshall S (2004) Ultrastructure and nanomechanical properties of cementum dentin junction. J Biomed Mater Res A 68(2):343–351
Malek S, Darendeliler MA, Rex T, Kharbanda OP, Srivicharnkul P, Swain MV (2003) Physical properties of root cementum: Part 2. Effect of different storage methods. Am J Orthod Dentofacial Orthop 124(5):561–570
Chutimanutskul W, Darendeliler MA, Shen G, Petocz P, Swain M (2006) Changes in the physical properties of human premolar cementum after application of 4 weeks of controlled orthodontic forces. Eur J Orthod 28(4):313–318
Acknowledgement
The authors would like to acknowledge and remember the late Dr Lihong He, whose data and scientific work in this area helped us to write this chapter.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Shahmoradi, M., Bertassoni, L.E., Elfallah, H.M., Swain, M. (2014). Fundamental Structure and Properties of Enamel, Dentin and Cementum. In: Ben-Nissan, B. (eds) Advances in Calcium Phosphate Biomaterials. Springer Series in Biomaterials Science and Engineering, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53980-0_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-53980-0_17
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-53979-4
Online ISBN: 978-3-642-53980-0
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)