History of Calcium Phosphates in Regenerative Medicine

  • Sergey Dorozhkin
Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 2)


The historical development of a scientific knowledge on calcium orthophosphates from the 1770s until 1950 is described. The chosen time scale starts with the earliest available studies of the 1770s (to the best of my findings, calcium orthophosphates had been unknown before), passes through the entire nineteenth century, and finishes in 1950, because since then the amount of publications on calcium orthophosphates rapidly increased and the subject became too broad. In addition, since publications of the second half of the twentieth century are easily accessible, the substantial amount of them has been already reviewed by other scientists. Many forgotten and poorly known historical facts and approaches have been extracted from the old publications. Then they have been analyzed, systematized, and reconsidered from the modern point of view. The reported historical findings clearly demonstrate that many famous scientists of the past contributed to calcium orthophosphate investigations. Furthermore, the significant quantity of the scientific facts and experimental approaches appears to have been known for very many decades, and, in fact, a good deal of the relatively recent investigations on the subject is just either a further development of the earlier studies or a rediscovery of the already forgotten knowledge.


Apatite Calcium orthophosphate Lime phosphate Calcium phosphate Calcareous phosphate 


  1. 1.
    Dorozhkin SV (2009) Calcium orthophosphates in nature, biology and medicine. Materials 2:399–498Google Scholar
  2. 2.
    Dorozhkin SV (2011) Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter 1:121–164Google Scholar
  3. 3.
    Calcium (2013) Accessed May 2013
  4. 4.
    Davy H (1808) The Bakerian lecture: on some new phenomena of chemical changes produced by electricity, particularly the decomposition of the fixed alkalies, and the exhibition of the new substances which constitute their bases; and on the general nature of alkaline bodies. Philos Trans R Soc Lond 98:1–44Google Scholar
  5. 5.
    Davy H (1808) Electro-chemical researches on the decomposition of the earths; with observations on the metals obtained from the alkaline earths, and on the amalgam procured from ammonia. Philos Trans R Soc Lond 98:333–370Google Scholar
  6. 6.
    Phosphorus (2013) Accessed May 2013
  7. 7.
    de Le phosphore M (1677) Krafft ov liqueur & terra ſeiche de ſa compoſition qui iettent continuellement de grands éclats de lumiere. Le Journal des Sçavans:190–191Google Scholar
  8. 8.
    Robert B (1693) A paper of the honourable Robert Boyl’s, deposited with the secretaries of the Royal Society, Octob. 14. 1680. and opened since his death; being an account of his making the phosphorus, etc. Philos Trans 17:583–584Google Scholar
  9. 9.
    History (2013) Accessed May 2013
  10. 10.
    Driskell TD (1994) Early history of calcium phosphate materials and coatings. In: Horowitz E, Parr JE (eds) Characterization and performance of calcium phosphate coatings for implants ASTM STP 1196. American Society for Testing and Materials, Philadelphia, pp 1–9Google Scholar
  11. 11.
    Albee FH, Morrison HF (1920) Studies in bone growth triple calcium phosphate as a stimulus to osteogenesis. Ann Surg 71:32–39Google Scholar
  12. 12.
    Shackelford JF (1999) Bioceramics – an historical perspective. Mater Sci Forum 293:1–4Google Scholar
  13. 13.
    Hulbert SF, Hench LL, Forbers D, Bowman LS (1982) History of bioceramics. Ceram Int 8:131–140Google Scholar
  14. 14.
    Hulbert SF, Hench LL, Forbers D, Bowman LS (1983) History of bioceramics. In: Vincenzini P (ed) Ceramics in surgery. Elsevier, Amsterdam, pp 3–29Google Scholar
  15. 15.
    Shepperd J (2004) The early biological history of calcium phosphates. In: Manley MT, Epinete JA (eds) Fifteen years of clinical experience with hydroxyapatite coatings in joint arthroplasty. Springer, Paris, pp 3–8Google Scholar
  16. 16.
    Leeuwenhoeck M (1674) Microscopical observations concerning blood, milk, bones, the brain, spitle, and cuticula, etc. Philos Trans 9:121–128Google Scholar
  17. 17.
    Anthony L (1677) Microscopical observations of the structure of teeth and other bones. Philos Trans 12:133–142Google Scholar
  18. 18.
    Anthony L (1683) Microscopic observations about animals in the scurf of the teeth, the substance called worms in the nose, the cuticura consisting of scale. Philos Trans 14:1568–1574Google Scholar
  19. 19.
    van Anthony L (1693) Animalcules found on the teeth of the scaleyness of the skin. Philos Trans 17:646–649Google Scholar
  20. 20.
    Anthony L (1697) The eggs of snails, roots of vegetables, teeth, and young oysters. Philos Trans 19:790–799Google Scholar
  21. 21.
    Havers C (1729) Osteologia nova: or, some new observations of the bones, and the PARTS belonging to them; with the manner of their accretion and nutrition, 2nd edn. Royal Society Weſt-End of St. Paul’s, London, p 293Google Scholar
  22. 22.
    Fre S (1684) An abstract of a treatise of the calculus humanus. Philos Trans 14:523–533Google Scholar
  23. 23.
    Fourcroy AF (1804) A general system of chemical knowledge; and its application to the phenomena of nature and art, vol XI. Cadell and Davies, London, p 561Google Scholar
  24. 24.
    Roscoe HE, Schorlemmer CA (1881) Treatise on chemistry, vol I. The non-metallic elements. Macmillan and Co., London, p 751Google Scholar
  25. 25.
    Cdell T, Elmsly P (1777) A dictionary of chemistry, vol III. Strand, London, p 666Google Scholar
  26. 26.
    Becket T, de Hondt PA (1770) The monthly review, vol XLII. Strand, London, p 584Google Scholar
  27. 27.
    Klaproth M, Ferber M (1788) Conſeiller des Mines de Pruſſe: Sur l’Analyse de l’Apatit. In: Observations sur la physique, sur l’historie naturelle et sur les arts, avec des planches en taille-douce; dédiées a MGR. le comte d’artois; Par M. l‘Abbé Rozier, de pluſieurs Académies; par M. J. A. Mongez le jeune, Chanoine Régulier de Sainte Geneviève, des Académies Royales des Sciences de Rouen, de Dijon, de Lyon, etc. etc. et par M. de la Métherie, Doeteur en Médecine, de pluſieurs Académies. Juillet tome XXXIII. A Paris, au bureau du Journal de Phyſique rue & hôtel Serpėnte, pp 313–314Google Scholar
  28. 28.
    Catalogue methodique et raisonné de la collection des fossils de MLLE. Éléonore de Raab. Par MR. de Born. Tome premier. A Vienne. Aux Dépens de J.V. Degen, par I. Alberti 1790, p 504Google Scholar
  29. 29.
    Crell L (1789) Chemische Annalen für die Freunde der Naturlehre, Arznengelahrtheit, Haushaltungskunst und Manufakturen. Helmstadt und Leipzig, in ber J O Müllerschen Buchhandlung, p 568Google Scholar
  30. 30.
    Exchaquet HS (1989) Nouvelle méthode d’obtenir l’acide phoſphorique des os, plus pur que par les procédés ordinaries. Histoire et memoires de la société des sciences physiques de Lausanne. Tome second Années 1784, 1785 & 1786, A Lausanne, Chez Mourer, Libraire, pp 219–227Google Scholar
  31. 31.
    Lavoisier AL (1790) Elements of chemistry, in a new systematic order, containing all the modern discoveries (Translated from the French, by Robert Kerr). Printed for William Creech, and sold in London by G.G. and J.J. Robinsons. Edinburgh, 511 ppGoogle Scholar
  32. 32.
    Fourcroy AF (1790) Elements of natural history and chemistry. Tranſlated from the ſast Paris Edition, 1789, being the third, in 5 vols 8vo. Vol. III. Aaron C. Jewett, London: Printed for C. Elliot and T. Kay, at Dr. Cullen’s Head, No 332. Strand; and C. Elliot, Edinburgh, 594 ppGoogle Scholar
  33. 33.
    Fourcroy AF (1804) A general system of chemical knowledge; and its application to the phenomena of nature and art, vol III. Cadell and Davies, London, p 472Google Scholar
  34. 34.
    Encyclopaedia Perthensis; or Universal dictionary of the arts, Sciences, literature, &c (1816), vol XVII. Edinburgh, p 720Google Scholar
  35. 35.
    Dundonald AC (1795) A treatise, shewing the intimate connection that subsists between agriculture and chemistry. Addressed to the cultivators of the soil, to the proprietors of fens and mosses, in Great Britain and Ireland, and to the proprietors of West India Estates. by the Earl of Dundonald. London: printed for the author, and sold by R. Edwards, No. 142, New Bond street. March 1795, 252 ppGoogle Scholar
  36. 36.
    Nisbet W (1805) A general dictionary of chemistry, containing the leading principles of the science, in regard to facts, experiments, and nomenclature. For the use of students. Printed for S. Highley (successor to the late Mr. John Murray). London, No. 24, Fleet-street, 415 ppGoogle Scholar
  37. 37.
    Murray J (1806) A system of chemistry. In four volumes. Vol. I. Printed for Longman, Hurst, Rees & Orme, London; and William Creech, and A. Constable & Co. Edinburgh. Edinburgh, 592 ppGoogle Scholar
  38. 38.
    A dictionary of chemistry and mineralogy, with an account of the processes employed in many of the most important chemical manufactures. To which are added a description of chemical apparatus, and various useful tables of weights and measures, chemical instruments, &c. &c. Illustrated with fifteen engravings. By A. & C. R. Aikin. Vol. II. London: Printed for John and Arthur Arch, Couninll; and William Phillips, George Yard, Lombard Street. 1807, 176 ppGoogle Scholar
  39. 39.
    Bache F (1819) A system of chemistry for the use of students of medicine. Printed and published for the author. William Fry, Philadelphia, p 624Google Scholar
  40. 40.
    Encyclopædia Britannica (1810), vol V. Edinburgh/London, p 797Google Scholar
  41. 41.
    Henry W (1823) The elements of experimental chemistry. The ninth edition, comprehending all the recent discoveries; and illustrated with ten plates by lowry, and several engravings on wood. In two volumes. Vol. I. London; Printed for Baldwin, Cradock, and Joy, Paternoster-row, and R. Hunter, St. Paul’s church yard, 639 ppGoogle Scholar
  42. 42.
    Equivalent weight (2013) Accessed May 2013
  43. 43.
    Webster JW (1828) A manual of chemistry, on the basis of professor Brande’s; containing the principle facts of the science, arranged in the order in which they are discussed and illustrated in the lectures at Harvard University, N.E., The United States Military Academy, West Point; Brown University, Amherst, and several other colleges in the United States. Compiled from the works of the most distinguished chemists. Designed as a text book for the use of students, and persons attending lectures on chemistry. The second edition, comprehending the recent discoveries, and illustrated with nine plates and several engravings on wood. Boston: Published by Richardson and Lord, No. 133, Washington Street, 631 ppGoogle Scholar
  44. 44.
    Green J (1829) A text book of chemical philosophy. RH Smalt, Philadelphia, p 616Google Scholar
  45. 45.
    Sainte-Claire Deville H, Caron H (1859) On apatite, wagnerite, and some artificial species of metallic phosphates. Philos Mag S 17:128–131Google Scholar
  46. 46.
    Muhlenberg WF (1832) Address in hygiene. In: Transactions of the medical society of the state of Pennsylvania, at its thirty-third annual session, held at Titusville, 10–12 May 1832, vol XIV. Times Printing House, Philadelphia, pp 81–102Google Scholar
  47. 47.
    Graham T (1833) Researches on the arseniates, phosphates, and modifications of phosphoric acid. Philos Trans R Soc Lond 123:253–284Google Scholar
  48. 48.
    Mitscherlich E (1844) Lehrbuch der Chemie. Erster Band. Die Metalloïde. Vierte Auflage, Berlin, p 609Google Scholar
  49. 49.
    Joy CA (1853) Miscellaneous chemical researchers. Inaugural dissertation for the degree of doctor of philosophy, addressed to the philosophical faculty of the University of Göttingen. University Press, Göttingen, p 49Google Scholar
  50. 50.
    Daubrée (1841) Extrait d’un mémoir sur le gisement, la constitution et l’origine des amas de minerai d’étain. Bulletin de la Société Géologique de France. Tome 12, 1840 a 1841. Paris, au lieu des séances de la société, aus du Vieux-Colombier 16, p 567Google Scholar
  51. 51.
    von Kobell F (1841) Instructions for the discrimination of minerals by simple chemical experiments. Richard Griffin & Company and Thomas Tegg, London, p 51Google Scholar
  52. 52.
    Gray A (1841) Elements of chemistry. Dayton and Saxton, School Book Publishers, Corner of Fulton and Nassau Streets Saxton and Pierce, Boston, p 396Google Scholar
  53. 53.
    Pereira J (1854) The elements of materia medica and therapeutics, 4th edn, Encyclopaedia of Materia Medica. Longmans, London, p 831Google Scholar
  54. 54.
    Percy J (1843) Notice of a new hydrated phosphate of lime. Mem Proc Chem Soc 2:222–223Google Scholar
  55. 55.
    Percy J (1845) Notice of a new hydrated phosphate of lime. Philos Mag S26:194–195Google Scholar
  56. 56.
    Berzelius J (1816) Untersuchungen über die Zusammensetzung der Phosphorsäure, der phosphorigen Säure und ihrer Salze. Ann Phys 53:393–446Google Scholar
  57. 57.
    Berzelius J (1845) Ueber basische phosphorsaure Kalkerde. Justus Liebigs Ann Chem 53:286–288Google Scholar
  58. 58.
    Rees GO (1883) On separating the phosphates of lime and magnesia. Philos Mag S2:442–443Google Scholar
  59. 59.
    Baruel M (1838) Analysis of a double phosphate of lead and lime. J Franklin Inst 25:343Google Scholar
  60. 60.
    Jones HB (1845) Contributions to the chemistry of the urine. On the variations in the alkaline and earthy phosphates in the healthy state, and on the alkalescence of the urine from fixed alkalies. Philos Trans R Soc Lond 135:335–349Google Scholar
  61. 61.
    Jones HB (1846) Contributions to the chemistry of the urine. Part II. On the variations in the alkaline and earthy phosphates in disease. Philos Trans R Soc Lond 136:449–459Google Scholar
  62. 62.
    Jones HB (1850) Contributions to the chemistry of the urine. Paper III. Part IV. On the variations of the sulphates and phosphates in disease. Philos Trans R Soc Lond 140:661–668Google Scholar
  63. 63.
    Smith JD (1845) Ueber die Zusammensetzung verschiedener Arten von südamerikanischem Guano, nebst der Beschreibung einer neuen Methode, Ammoniak zu bestimmen, so wie Kalk und Magnesia, wenn sie an Phosphorsäure gebunden sind, zu trennen. J Prakt Chem 35:277–291Google Scholar
  64. 64.
    Lassaigne M (1847) Solubility of phosphate of lime in water saturated with carbonic acid. Philos Mag S30:298Google Scholar
  65. 65.
    Dorozhkin SV (2012) Amorphous calcium orthophosphates: nature, chemistry and biomedical applications. Int J Mater Chem 2:19–46Google Scholar
  66. 66.
    Hassall AH (1859) On the frequent occurrence of phosphate of lime, in the crystalline form, in human urine, and on its pathological importance. Proc R Soc Lond 10:281–288Google Scholar
  67. 67.
    Beale L (1860) A course of lectures on urine, urinary deposits, and calculi. BMJ 205:929–932Google Scholar
  68. 68.
    F (1849) On the method by which the phosphate and carbonate of lime is introduced into the organs of plants. J Franklin Inst 48:156Google Scholar
  69. 69.
    Bischof G (1855) Elements of chemical and physical geology. Translated from the manuscript of the author, by Benjamin H. Paul, F.C.S. vol II. Printed for the Cavendish Society by Harrison & Sons, St. Martins’ lane, London, p 523Google Scholar
  70. 70.
    Warington R Jr (1866) Researches on the phosphates of calcium, and upon the solubility of tricalcic phosphate. J Chem Soc 19:296–318Google Scholar
  71. 71.
    Voelcker A (1868) On the solubility of phosphatic materials, with special reference to the practical efficacy of the various forms in which bones are used in agriculture. J R Agric Soc Engl Sec Ser 4:176–196Google Scholar
  72. 72.
    Warington R (1871) On the solubility of the phosphates of bone-ash in carbonic water. J Chem Soc 24:80–83Google Scholar
  73. 73.
    Williams CP (1871) On the solubility of some forms of phosphate of lime. J Franklin Inst 92:419–423Google Scholar
  74. 74.
    An inquiry into the degree of solubility requisite in manures, with special reference to precipitated calcic and magnesic phosphates. Nature 27:325–326 (1883)Google Scholar
  75. 75.
    Wilson G (1850) Chemistry. William and Robert Chambers, Edinburgh, p 316Google Scholar
  76. 76.
    Jenkins EE (1853) Phosphate of lime. M.D. thesis, Medical College of the State of South Carolina, p 32Google Scholar
  77. 77.
    Brande WT, Taylor AS (1863) Chemistry. Blanchard and Lea, Philadelphia, p 696Google Scholar
  78. 78.
    Morfit C (1855) On Colombian guano; and certain peculiarities in the chemical behavior of “bone phosphate of lime”. J Franklin Inst 30:325–329Google Scholar
  79. 79.
    Warington R (1843) On a curious change in the composition of bones taken from the guano. Mem Proc Chem Soc 2:223–226Google Scholar
  80. 80.
    Warington R (1873) On the decomposition of tricalcic phosphate by water. J Chem Soc 26:983–989Google Scholar
  81. 81.
    Fresenius R (1867) Ueber die Bestimmung der Phosphorsäure im Phosphorit nebst Mittheilung der Analysen des Phosphorits und Staffelits aus dem Lahnthal. Z Anal Chem 6:403–409Google Scholar
  82. 82.
    Lorah JR, Tartar HV, Wood L (1929) A basic phosphate of calcium and of strontium and the adsorption of calcium hydroxide by basic calcium phosphate and by tricalcium phosphate. J Am Chem Soc 51:1097–1106Google Scholar
  83. 83.
    Wells HG (1906) Pathological calcification. J Med Res 14:491–525Google Scholar
  84. 84.
    Roscoe HE, Schorlemmer C (1879) A treatise on chemistry, vol II. Metals. Part 1. Macmillan and Co., London, p 504Google Scholar
  85. 85.
    Hassall A (1852) On the detection and preservation of crystalline deposits of uric acid, urate of ammonia, phosphate of lime, triple phosphate, oxalate of lime, and other salts. Lancet 59:466–467Google Scholar
  86. 86.
    Abel FA (1862) On the occurrence of considerable deposits of crystallized phosphate of lime in teak-wood. J Chem Soc 15:91–93Google Scholar
  87. 87.
    Reichardt E (1872) Ueber neutralen phosphorsauren Kalk, Darstellung und Löslichkeit desselben. Z Anal Chem 11:275–277Google Scholar
  88. 88.
    Stammer C (1863) Bestimmung kohlensauren Kalkes neben phosphorsaurem Kalk. Z Anal Chem 2:96–97Google Scholar
  89. 89.
    Roussin Z (1868) Prüfung des Wismuthsubnitrats auf eine Verfälschung mit Kalkphosphat. Z Anal Chem 7:511Google Scholar
  90. 90.
    Birnbaum K, Chojnacki C (1870) Ueber die Bestimmung der Phosphorsäure in Phosphoriten. Z Anal Chem 9:203–207Google Scholar
  91. 91.
    Graeser P (1870) Maassanalytische Bestimmung der Phosphorsäure in Phosphoriten. Z Anal Chem 9:355–357Google Scholar
  92. 92.
    Janovsky JV (1872) Ueber die verschiedenen Methoden der Phosphorsäure-Bestimmung neben Eisenoxyd, Thonerde, Kalk und Magnesia. Z Anal Chem 11:153–167Google Scholar
  93. 93.
    Zur T (1875) Bestimmung des Jods in Phosphoriten. Z Anal Chem 14:97Google Scholar
  94. 94.
    Maly R (1876) Eine Methode zur alkalimetrischen Bestimmung der Phosphorsäure und der alkalischen Phosphate. Z Anal Chem 15:417–425Google Scholar
  95. 95.
    Pellet H (1882) Die Zusammensetzung des Niederschlags, welcher durch Ammoniak aus sauren Lösungen von Phosphorsäure, Baryt, Kalk und Magnesia gefällt wird. Z Anal Chem 21:261Google Scholar
  96. 96.
    Stokvis BJ, Salkowski E, Smith WG (1888) Ueber die Löslichkeitsverhältnisse des phosphorsauren Kalks im Harn. Z Anal Chem 23:273–274Google Scholar
  97. 97.
    Ott A (1886) Die Löslichkeitsverhältnisse des phosphorsauren Kalks im Harn. Z Anal Chem 25:279–280Google Scholar
  98. 98.
    Kennepohl G (1889) Zur Bestimmung von Eisenoxyd und Thonerde neben Kalk und Phosphorsäure. Z Anal Chem 28:343Google Scholar
  99. 99.
    Immendorff H, Reitmair O (1892) Zur Bestimmung des Kalks in Gegenwart von Phosphorsäure, Eisen, Thonerde und Mangan. Z Anal Chem 31:313–316Google Scholar
  100. 100.
    Fingerling G, Grombach A (1907) Eine neue Modifikation der Bestimmung der zitratlöslichen Phosphorsäure in den Futterkalken nach Petermann. Z Anal Chem 46:756–760Google Scholar
  101. 101.
    Schulze B (1911) Untersuchung des phosphorsauren Futterkalkes. Z Anal Chem 50:126–127Google Scholar
  102. 102.
    Hinden F (1915) Anreicherungsmethode zur Bestimmung der Phosphorsäure in phosphorsäurearmen Kalksteinen. Z Anal Chem 54:214–216Google Scholar
  103. 103.
    Mohr C (1884) Ueber die quantitative Bestimmung der zurückgegangenen Phosphorsäure und der Phosphorsäure im Dicalciumphosphat. Z Anal Chem 23:487–491Google Scholar
  104. 104.
    Glaser C (1885) Bemerkungen zu der Abhandlung des Herrn Carl Mohr über die quantitative Bestimmung der zurückgegangenen Phosphorsäure und der Phosphorsäure im Dicalciumphosphat. Z Anal Chem 24:180Google Scholar
  105. 105.
    Hutchings WM (1887) Occurrence of apatite in slag. Nature 36:460Google Scholar
  106. 106.
    Hilgenstock G (1883) Eine neue Verbindung von P2O5 und CaO. Stahl und Eisen 3:498Google Scholar
  107. 107.
    Hilgenstock G (1887) Das vierbasische Kalkphosphat und die Basicitätsstufe des Silicats in der Thomas-Schlacxke. Stahl und Eisen 7:557–560Google Scholar
  108. 108.
    Scheibler C (1886) Ueber die Herstellung reicher Kalkphosphate in Verbindung mit einer Verbesserung des Thomasprocesses. Ber Dtsch Chem Ges 19:1883–1893Google Scholar
  109. 109.
    Tzschucke H (1888) Versuch einer directen Bestimmung der Phosphorsäure als dreibasisch phosphorsauren Kalk. Angew Chem 1:383–385Google Scholar
  110. 110.
    Georgievics GV (1891) Über das Verhalten des Tricalciumphosphats gegen Kohlensäure und Eisenhydroxyd. Monatsh Chem 12:566–581Google Scholar
  111. 111.
    Duncan A Jr (1803) The Edinburgh new dispensatory: containing, I. The Elements of Pharmaceutical Chemistry. II. The Materia Medica; or, the Natural, Pharmaceutical and Medical Hiſtory of the different Subſtances employed in Medicine. III. The Pharmaceutical Preparations and Compositions; including complete and accurate translations of the Octavo Edition of the London Pharmacopoeia, published in 1803. Illuſtrated and Explained in the Language and according to the Principles of Modern Chemistry. Printed for Bell & Bradfute; G. & J. Robinson, London; and Gilbert & Hodges, Dublin. Edinburgh, 710 ppGoogle Scholar
  112. 112.
    Pusey P (1846) On superphosphate of lime. J R Agric Soc Engl 6:324–328Google Scholar
  113. 113.
    Kennedy JCG (1864) Agriculture of the United States in 1860. GPO, Washington, DC, p 292Google Scholar
  114. 114.
    Fresenius R (1868) Zur Analyse der Superphosphate. Z Anal Chem 1868(7):304–309Google Scholar
  115. 115.
    Chesshire JA, Hughes J, Sutton F, Sibson A (1870) Ueber die Bestimmung des Betrags an “reducirten” Phosphaten in Superphosphaten. Z Anal Chem 9:524–527Google Scholar
  116. 116.
    Rümpler A (1873) Ueber eisen- und thonerdehaltige Superphosphate und deren analytische Untersuchung. Z Anal Chem 12:151–163Google Scholar
  117. 117.
    Albert H, Siegfried L (1877) Beiträge zur Werthbestimmung der Superphosphate. Z Anal Chem 16:182–188Google Scholar
  118. 118.
    Albert H, Siegfried L (1879) Beiträge zur Werthbestimmung der Superphosphate. Z Anal Chem 18:220–224Google Scholar
  119. 119.
    Pavec A (1879) Zur maassanalytischen Bestimmung der Phosphorsäure im Superphosphat und Spodium mittelst Uranlösung. Z Anal Chem 18:360–361Google Scholar
  120. 120.
    Mohr C (1880) Ein maassanalytisches Bestimmungsverfahren der in Rohphosphaten und Superphosphaten enthaltenen Phosphorsäure mit Uran bei Gegenwart von Eisenoxyd. Z Anal Chem 19:150–153Google Scholar
  121. 121.
    Erlenmeyer E, Wattenberg H, Wein E, Rösch L, Lehmann J, Johnson SW, Jenkins EH (1880) Zur Analyse der Superphosphate. Z Anal Chem 19:243–246Google Scholar
  122. 122.
    Meyer CF (1881) Weitere Mittheilungen über das Zurückgehen der eisen- und thonerdehaltigen Superphosphate – Berichtigung. Z Anal Chem 19:309–311Google Scholar
  123. 123.
    Drewsen S (1881) Zur Bestimmung der löslichen Phosphorsäure in Superphosphaten. Z Anal Chem 20:54–57Google Scholar
  124. 124.
    Lloyd FJ (1882) On the estimation of retrograde phosphates. J Chem Soc Trans 41:306–317Google Scholar
  125. 125.
    Mollenda A (1883) Eine neue Methode zur maassanalytischen Bestimmung der Phosphorsäure in den Superphosphaten. Z Anal Chem 22:155–159Google Scholar
  126. 126.
    Phillips WB (1884) Rate of reversion in superphosphates prepared from red Navassa rock. J Am Chem Soc 6:224–228Google Scholar
  127. 127.
    Wagner P (1886) Eine neue Methode zur Feststellung des Handelswerthes der Superphosphate. Z Anal Chem 25:272–278Google Scholar
  128. 128.
    Emmerling A (1887) Eine Methode zur Bestimmung der wasserlöslichen Phosphorsäure in Superphosphaten auf maassanalvtischem Wege. Z Anal Chem 26:244–247Google Scholar
  129. 129.
    Stoklasa J (1890) Bestimmung des Wassers in den Superphosphaten. I Z Anal Chem 29:390–397Google Scholar
  130. 130.
    Crispo D (1891) Belgische Methode zur Bestimmung der in Wasser löslichen Phosphorsäure in den Superphosphaten. Z Anal Chem 30:301–303Google Scholar
  131. 131.
    Güssefeld O (1892) Eine Schüttelmaschine für die Analyse von Superphosphaten. Z Anal Chem 31:556Google Scholar
  132. 132.
    Keller A (1893) Eine Schüttelmaschine für Superphosphaten. Z Anal Chem 32:590–591Google Scholar
  133. 133.
    Kalmann W, Meissels K (1894) Eine Methode zur maassanalytischen Schätzung der wasserlöslichen Phosphorsäure in Superphosphaten. Z Anal Chem 33:764–766Google Scholar
  134. 134.
    Glaser C (1895) Zur maassanalytischen Bestimmung der wasserlöslichen Phosphorsäure in Superphosphaten. Z Anal Chem 34:768–769Google Scholar
  135. 135.
    Seib O (1905) Bestimmung der zitratlöslichen Phosphorsäure in Superphosphaten. Z Anal Chem 44:397–398Google Scholar
  136. 136.
    Cameron FK, Bell JM (1906) The phosphates of calcium, III; Superphosphate. J Am Chem Soc 28:1222–1229Google Scholar
  137. 137.
    C (1877) Vitreous phosphate of lime. J Franklin Inst 104:315Google Scholar
  138. 138.
    Church AH (1873) New analyses of certain mineral arseniates and phosphates. 1. Apatite; 2. Arseniosiderite; 3. Childrenite; 4. Ehlite; 5. Tyrolite; 6. Wavellite. J Chem Soc 26:101–111Google Scholar
  139. 139.
    Felton LD, Kauffmann G, Stahl HJ (1935) The precipitation of bacterial polysaccharides with calcium phosphate. Pneumococcus. J Bacteriol 29:149–161Google Scholar
  140. 140.
    Row R (1903) On some effects of the constituents of Ringer’s circulating fluid on skeletal muscular contractions in Rana hexadactyla. J Physiol 29:440–450Google Scholar
  141. 141.
    Ringer S (1882) Concerning the influence exerted by each of the constituents of the blood on the contraction of the ventricle. J Physiol 3:380–393Google Scholar
  142. 142.
    Ringer S (1886) A further contribution regarding the effect of minute quantities of inorganic salts on organised structures. J Physiol 7:118–127Google Scholar
  143. 143.
    Ringer S, Buxton DW (1887) Concerning the action of calcium, potassium, and sodium salts upon the eel’s heart and upon the skeletal muscles of the frog. J Physiol 8:15–19Google Scholar
  144. 144.
    Ringer S (1887) Regarding the action of lime potassium and sodium salts on skeletal muscle. J Physiol 8:20–24Google Scholar
  145. 145.
    Ringer S (1893) The influence of carbonic acid dissolved in saline solutions on the ventricle of the frog’s heart. J Physiol 14:125–130Google Scholar
  146. 146.
    Cameron FK, Hurst LA (1904) The action of water and saline solutions upon certain slightly soluble phosphates. J Am Chem Soc 26:885–913Google Scholar
  147. 147.
    Cameron FK, Seidell A (1904) The action of water upon the phosphates of calcium. J Am Chem Soc 26:1454–1463Google Scholar
  148. 148.
    Cameron FK, Seidell A (1905) The phosphates of calcium. I. J Am Chem Soc 27:1503–1512Google Scholar
  149. 149.
    Cameron FK, Bell JM (1905) The phosphates of calcium. II. J Am Chem Soc 27:1512–1514Google Scholar
  150. 150.
    Cameron FK, Bell JM (1910) The phosphates of calcium. IV. J Am Chem Soc 32:869–873Google Scholar
  151. 151.
    Cameron FK, McCaughey WJ (1911) Apatite and spodiosite. J Phys Chem 15:463–470Google Scholar
  152. 152.
    Mebane WM, Dobbins JT, Cameron FK (1929) The solubility of the phosphates of calcium in aqueous solutions of sulfur dioxide. J Phys Chem 33:961–969Google Scholar
  153. 153.
    Hughes AE, Cameron FK (1931) Action of sulfur dioxide on phosphates of calcium. Ind Eng Chem 23:1262–1271Google Scholar
  154. 154.
    Bassett H Jr (1907) Beiträge zum Studium der Calciumphosphate. I. Die Hydrate der Calcium-Hydroorthophosphate. Z Anorg Chem 53:34–48Google Scholar
  155. 155.
    Bassett H Jr (1907) Beiträge zum Studium der Calciumphosphate. II. Die Einwirkung von Ammoniakgas auf Calcium-Hydroorthophosphate. Z Anorg Chem 53:49–62Google Scholar
  156. 156.
    Bassett H Jr (1908) Beiträge zum Studium der Calciumphosphate. III. Das System CaO – P2O5–H2O. Z Anorg Chem 59:1–55Google Scholar
  157. 157.
    Bassett H Jr (1917) The phosphates of calcium. Part IV. The basic phosphates. J Chem Soc 111:620–642Google Scholar
  158. 158.
    Norton TH, Newman HE (1897) On a soluble compound of hydrastine with monocalcium phosphate. J Am Chem Soc 19:838–840Google Scholar
  159. 159.
    Bell JM (1910) The rate of extraction of plant food constituents from the phosphates of calcium and from a loam soil. J Am Chem Soc 32:879–884Google Scholar
  160. 160.
    Rolfe BH (1911) Autunite (hydrated uranium-calcium phosphate). Lancet 177:766Google Scholar
  161. 161.
    Meigs EB (1915) The osmotic properties of calcium and magnesium phosphate in relation to those of living cells. Am J Physiol 38:456–489Google Scholar
  162. 162.
    Withers WA, Field AL (1915) A conductivity study of the reaction between calcium nitrate and dipotassium phosphate in dilute solution. J Am Chem Soc 37:1091–1105Google Scholar
  163. 163.
    Wendt GL, Clarke AH (1923) An electrometric study of the neutralization of phosphoric acid by calcium hydroxide. J Am Chem Soc 45:881–887Google Scholar
  164. 164.
    de Toni GM (1921) Ueber kolloides Kalziumphosphat. Kolloid Z 28:145–148Google Scholar
  165. 165.
    Gaubert P (1922) Sur les cristaux liquides de phosphate de calcium. Cr Hebd Acad Sci 174:1115–1117Google Scholar
  166. 166.
    Shipley PG, Kramer B, Howland J (1926) Studies upon calcification in vitro. Biochem J 20:379–387Google Scholar
  167. 167.
    von Oettingen WF, Pickett RE (1932) The effect of phosphate and bicarbonate buffers on the ionization of calcium salts in physiologic salt solutions. J Pharmacol Exp Ther 44:435–443Google Scholar
  168. 168.
    Benjamin HR (1933) The forms of the calcium and inorganic phosphorus in human and animal sera II. The nature and significance of the filtrable, adsorbable calcium-phosphorus complex. J Biol Chem 100:57–78Google Scholar
  169. 169.
    Ramsay AA (1917) The solubility of calcium phosphates in citric acid. J Agric Sci 8:277–298Google Scholar
  170. 170.
    Shear MJ, Kramer B (1928) Composition of bone. III Physicochemical mechanism. J Biol Chem 79:125–145Google Scholar
  171. 171.
    Trömel G, Möller H (1932) Die Bildung schwerlöslicher Calciumphosphate aus wäßriger Lösung und die Beziehungen dieser Phosphate zur Apatitgruppe. Z Anorg Allg Chem 206:227–240Google Scholar
  172. 172.
    Larson HWE (1935) Preparation and properties of mono-, di-, and tricalcium phosphates. Ind Eng Chem Anal Ed 7:401–406Google Scholar
  173. 173.
    Elsenberger S, Lehrman A, Turner WD (1940) The basic calcium phosphates and related systems. Some theoretical and practical aspects. Chem Rev 26:257–296Google Scholar
  174. 174.
    MacIntire WH, Wintrerberg SH, Marshall HL, Palmer G, Fetzer WR (1944) Industrial precipitated tricalcium phosphates. Ind Eng Chem 36:547–552Google Scholar
  175. 175.
    Brasseur H, Dallemagne MJ, Melon J (1946) Chemical nature of salts from bones and teeth and of tricalcium phosphate precipitates. Nature 157:453Google Scholar
  176. 176.
    MacIntire WH, Palmer G, Marshall HL (1945) A “reference” precipitated tricalcium phosphate hydrate. Ind Eng Chem 37:164–169Google Scholar
  177. 177.
    Mehmel M (1930) Über die Struktur des Apatits. Z Kristallogr 75:323–331Google Scholar
  178. 178.
    Náray-Szabó S (1930) The structure of apatite (CaF)Ca4(PO4)3. Z Kristallogr 75:387–398Google Scholar
  179. 179.
    Hendricks SB, Hill WL, Jacob KD, Jefferson ME (1931) Structural characteristics of apatite-like substances and composition of phosphate rock and bone as determined from microscopical and X-ray diffraction. Ind Eng Chem 23:1413–1418Google Scholar
  180. 180.
    Gruner JW, McConnell D (1937) The problem of the carbonate-apatites. The structure of francolite. Z Kristallogr 97:208–215Google Scholar
  181. 181.
    McConnell D (1938) The problem of the carbonate apatites; a carbonate oxy-apatite (dahllite). Am J Sci 36:296–303Google Scholar
  182. 182.
    Terpstra P (1937) On the crystallography of brushite. Z Kristallogr 97:229–233Google Scholar
  183. 183.
    Hodge HC, Lefevre ML, Bale WF (1938) Chemical and X-ray diffraction studies of calcium phosphates. Ind Eng Chem Anal Ed 10:156–161Google Scholar
  184. 184.
    McConnell D (1938) A structural investigation of the isomorphism of the apatite group. Am Mineral 23:1–19Google Scholar
  185. 185.
    Holt LE, la Mer VK, Chown HB (1925) Studies in calcification I. The solubility product of secondary and tertiary calcium phosphate under various conditions. J Biol Chem 64:509–565Google Scholar
  186. 186.
    Holt LE, la Mer VK, Chown HB (1925) Studies in calcification II. Delayed equilibrium between the calcium phosphates and its biological significance. J Biol Chem 64:567–578Google Scholar
  187. 187.
    Holt LE, Gittleman I (1925) The solubility of tertiary calcium phosphate in cerebrospinal fluid. J Biol Chem 66:23–28Google Scholar
  188. 188.
    Stollenwerk W (1926) Untersuchungen über die Löslichkeit des Monocalciumphosphats in Wasser. Z Anorg Allg Chem 156:37–55Google Scholar
  189. 189.
    Sendroy J, Hastings AB (1927) Studies of the solubility of calcium salts II. The solubility of tertiary calcium phosphate in salt solutions and biological fluids. J Biol Chem 71:783–796Google Scholar
  190. 190.
    Sendroy J, Hastings AB (1927) Studies of the solubility of calcium salts III. The solubility of calcium carbonate and tertiary calcium phosphate under various conditions. J Biol Chem 71:797–846Google Scholar
  191. 191.
    Csapo J (1927) The influence of proteins on the solubility of calcium phosphate. J Biol Chem 75:509–515Google Scholar
  192. 192.
    Clark NA (1931) The system P2O5–CaO–H2O and the recrystallization of monocalcium phosphate. J Phys Chem 35:1232–1238Google Scholar
  193. 193.
    Lugg JWH (1931) A study of aqueous salt solutions in equilibrium with solid secondary calcium phosphate at 40 °C. Trans Faraday Soc 27:297–309Google Scholar
  194. 194.
    Logan MA, Taylor HL (1937) Solubility of bone salt. J Biol Chem 119:293–307Google Scholar
  195. 195.
    Logan MA, Taylor HL (1938) Solubility of bone salt: II Factors affecting its formation. J Biol Chem 125:377–390Google Scholar
  196. 196.
    Logan MA, Taylor HL (1938) Solubility of bone salt: III Partial solution of bone and carbonate-containing calcium phosphate precipitates. J Biol Chem 125:391–397Google Scholar
  197. 197.
    Logan MA, Kane LW (1939) Solubility of bone salt: IV Solubility of bone in biological fluids. J Biol Chem 127:705–710Google Scholar
  198. 198.
    Greenwald I (1942) The solubility of calcium phosphate I The effect of pH and of amount of solid phase. J Biol Chem 143:703–710Google Scholar
  199. 199.
    Greenwald I (1942) The solubility of calcium phosphate II The solubility product. J Biol Chem 143:711–714Google Scholar
  200. 200.
    Kuyper AC (1945) The chemistry of bone formation I. The composition of precipitates formed from salt solutions. J Biol Chem 159:411–416Google Scholar
  201. 201.
    Kuyper AC (1945) The chemistry of bone formation II. Some factors which affect the solubility of calcium phosphate in blood serum. J Biol Chem 159:417–424Google Scholar
  202. 202.
    Jenkins GN, Forster MG (1948) The solubility of calcium phosphate and dental tissues in incubated mixtures of saliva and flours of different extraction rates. Biochem J 42:lviGoogle Scholar
  203. 203.
    Rae JJ, Clegg CT (1948) The effect of various inorganic salts on the solubility of calcium phosphate, tooth enamel, and whole teeth in lactic acid. J Dent Res 27:52Google Scholar
  204. 204.
    Rae JJ, Clegg CT (1948) Changes in the calcium and phosphate concentrations of saliva and inorganic salt solutions on shaking with calcium phosphate. J Dent Res 27:54–57Google Scholar
  205. 205.
    Muhler JC, Boyd TM, van Huysen G (1950) Effect of fluorides and other compounds on the solubility of enamel, dentin, and tricalcium phosphate in dilute acids. J Dent Res 29:182–193Google Scholar
  206. 206.
    Ericsson Y (1949) Enamel-apatite solubility: investigations into the calcium phosphate equilibrium between enamel and saliva and its relation to dental caries. Stockholm, p 139Google Scholar
  207. 207.
    Whittier EO (1933) Buffer intensities of milk and milk constituents II. Buffer action of calcium phosphate. J Biol Chem 102:733–747Google Scholar
  208. 208.
    Bredig MA, Franck HH, Fülnder H (1932) Beiträge zur Kenntnis der Kalk-Phosphorsäure-Verbindungen. II. Z Elktrochem Angew 38:158–164Google Scholar
  209. 209.
    Trömel G (1932) Beiträge zur Kenntnis des Systems Kalziumoxyd-Phosphorpentoxyd. Mitt Kaiser-Wilhelm-Inst, Eisenforsch, Düsseldorf 14:25–34Google Scholar
  210. 210.
    Jansen W (1933) Über die Reduktion des Tricalciumphosphates. Z Anorg Allg Chem 210:113–124Google Scholar
  211. 211.
    Keenen FG (1930) Reactions occurring during the ammoniation of superphosphate. Ind Eng Chem 22:1378–1382Google Scholar
  212. 212.
    Keenen FG (1932) Available phosphoric acid content of ammoniated superphosphate. Ind Eng Chem 24:44–49Google Scholar
  213. 213.
    MacIntire WH, Shaw WM (1932) Chemical changes in mixtures of superphosphate with dolomite and with limestone. Ind Eng Chem 24:933–941Google Scholar
  214. 214.
    MacIntire WH, Shaw WM (1932) Reactivity between dolomite and superphosphate components. Ind Eng Chem 24:1401–1409Google Scholar
  215. 215.
    White LM, Hardesty JO, Ross WH (1935) Ammoniation of double superphosphate. Ind Eng Chem 27:563–567Google Scholar
  216. 216.
    Hill WL, Hendricks SB (1936) Composition and properties of superphosphate – calcium phosphate and calcium sulfate constituents as shown by chemical and X-ray diffraction analysis. Ind Eng Chem 28:440–447Google Scholar
  217. 217.
    Copson RL, Newton RH, Lindsay JD (1936) Superphosphate manufacture – mixing phosphate rook with concentrated phosphoric acid. Ind Eng Chem 28:923–927Google Scholar
  218. 218.
    Newton RH, Copson RL (1936) Superphosphate manufacture – composition of superphosphate made from phosphate rock and concentrated phosphoric acid. Ind Eng Chem 28:1182–1186Google Scholar
  219. 219.
    Beeson KC, Jacob KD (1938) Chemical reactions in fertilizer mixtures – reactions of calcined phosphate with ammonium sulfate and superphosphate. Ind Eng Chem 30:304–308Google Scholar
  220. 220.
    Whittaker CW, Lundstrom FO, Shimp JH (1934) Action of urea on calcium orthophosphates. Ind Eng Chem 26:1307–1311Google Scholar
  221. 221.
    Southard JC, Milner RT (1935) Low temperature specific heats. V. The heat capacity of tricalcium phosphate between 15 and 298 degrees K. J Am Chem Soc 57:983–984Google Scholar
  222. 222.
    Nagelschmidt G (1937) A new calcium silicophosphate. J Chem Soc:865–867Google Scholar
  223. 223.
    McConnell D (1937) The substitution of SiO4- and SO4-groups for PO4-groups in the apatite structure; ellestadite, the end-member. Am Mineral 22:977–989Google Scholar
  224. 224.
    Hill WL, Hendricks SB, Jefferson ME, Reynolds DS (1937) Phosphate fertilizers by calcination process. Composition of defluorinated phosphate. Ind Eng Chem 29:1299–1304Google Scholar
  225. 225.
    Marshall HL, Reynolds DS, Jacob KD, Tremearne TH (1937) Phosphate fertilizers by calcination process. Reversion of defluorinated phosphate at temperatures below 1400 °C. Ind Eng Chem 29:1294–1298Google Scholar
  226. 226.
    Curtis HA, Copson RL, Brown EH, Pole GR (1937) Fertilizer from rock phosphate conversion by fusion and treatment with water vapor. Ind Eng Chem 29:766–771Google Scholar
  227. 227.
    MacIntire WH, Hammond JW (1938) Removal of fluorides from natural waters by calcium phosphates. Ind Eng Chem 30:160–162Google Scholar
  228. 228.
    Adler H, Klein G, Lindsay FK (1938) Removal of fluorides from potable water by tricalcium phosphate. Ind Eng Chem 30:163–165Google Scholar
  229. 229.
    Behrman AS, Gustafson H (1938) Removal of fluorine from water – a development in the use of tricalcium phosphate. Ind Eng Chem 30:1011–1013Google Scholar
  230. 230.
    Moore LA (1942) Activation of dicalcium phosphate for the chromatographic determination of carotene. Ind Eng Chem 14:707–708Google Scholar
  231. 231.
    Elmore KL, Farr TD (1940) Equilibrium in the system calcium oxide–phosphorus pentoxide–water. Ind Eng Chem 32:580–586Google Scholar
  232. 232.
    Arnold PW (1950) The nature of precipitated calcium phosphates. Trans Faraday Soc 46:1061–1072Google Scholar
  233. 233.
    Frondel C (1941) Whitlockite: a new calcium phosphate, Ca3(PO4)2. Am Mineral 26:145–152Google Scholar
  234. 234.
    Salk JE (1941) Partial purification of the virus of epidemic influenza by adsorption on calcium phosphate. Proc Soc Exp Biol Med 46:709–712Google Scholar
  235. 235.
    Salk JE (1945) The immunizing effect of calcium phosphate adsorbed influenza virus. Science 101:122–124Google Scholar
  236. 236.
    Stanley WM (1945) The precipitation of purified concentrated influenza virus and vaccine on calcium phosphate. Science 101:332–335Google Scholar
  237. 237.
    Hill WL, Hendricks SB, Fox EJ, Cady JG (1947) Acid pyro- and metaphosphates produced by thermal decomposition of monocalcium phosphate. Ind Eng Chem 39:1667–1672Google Scholar
  238. 238.
    Egan EP Jr, Wakefield ZT, Elmore KL (1950) High-temperature heat content of hydroxyapatite. J Am Chem Soc 72:2418–2421Google Scholar
  239. 239.
    Greenwald I (1944) Anomalous effects in the titration of phosphoric acid with calcium hydroxide. J Am Chem Soc 66:1305–1306Google Scholar
  240. 240.
    Ratner BD (2012) A history of biomaterials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine, 3rd edn. Academic Press, San Diego, pp xli–liiiGoogle Scholar
  241. 241.
    Jacoby M (2001) Custom-made biomaterials. Chem Eng News 79:30–35Google Scholar
  242. 242.
    Huebsch N, Mooney DJ (2009) Inspiration and application in the evolution of biomaterials. Nature 462:426–432Google Scholar
  243. 243.
    Popp H (1939) Zur Geschichte der Prosthesen. Med Welt 13:961–964Google Scholar
  244. 244.
    Ring ME (1992) Dentistry: an illustrated history. Harry N Abrams, New York, p 320Google Scholar
  245. 245.
    Bobbio A (1972) The first endosseous alloplastic implant in the history of man. Bull Hist Dent 20:1–6Google Scholar
  246. 246.
    Crubezy E, Murail P, Girard L, Bernadou JP (1998) False teeth of the Roman world. Nature 391:29Google Scholar
  247. 247.
    van Meekeren J (1668) Heel’-en geneeskonstige aanmerkingen. Commelijn, AmsterdamGoogle Scholar
  248. 248.
    von Walter P (1821) Wiedereinheilung der bei der Trapanation ausgebohrten Knochenscheibe. J Chir Augen Heilkunde 2:571Google Scholar
  249. 249.
    Macewen W (1881) Observations concerning transplantation of bone. Illustrated by a case of inter-human osseous transplantation, whereby over two-thirds of the shaft of a humerus was restored. Proc R Soc Lond 32:232–247Google Scholar
  250. 250.
    de Boer HH (1988) The history of bone grafts. Clin Orthop Relat Res 226:292–298Google Scholar
  251. 251.
    Hunter J (1771) The natural history of the human teeth: explaining their structure, use, formation, growth, and diseases. Printed for J. Johnson, No 72. St. Paul’s Church-yard, London, 191 ppGoogle Scholar
  252. 252.
    Hoffman-Axthelm W (1981) History of dentistry. Quintessence, Chicago, p 436Google Scholar
  253. 253.
    Wildgoose DG, Johnson A, Winstanley RB (2004) Glass/ceramic/refractory techniques, their development and introduction into dentistry: a historical literature review. J Prosthet Dent 91:136–143Google Scholar
  254. 254.
    Cravens JE (1876) Lacto-phosphate of lime; pathology and treatment of exposed dental pulps and sensitive dentine. Dent Cosmos 18:463–476Google Scholar
  255. 255.
    Pendleton LW (1873) The lacto-phosphate of lime. Trans Maine Med Assoc 4:313–318Google Scholar
  256. 256.
    Dorozhkin SV (2011) Biocomposites and hybrid biomaterials based on calcium orthophosphates. Biomatter 1:3–56Google Scholar
  257. 257.
    Nicholson W (1808) A dictionary of practical and theoretical chemistry, with its application to the arts and manufactures, and to the explanation of the phænomena of nature: including throughout the latest discoveries, and the present state of knowledge on those subjects. With plates and tables. Printed for Richard Phillips, No. 6, Bridge-streetGoogle Scholar
  258. 258.
    Dreesmann H (1892) Ueber Knochenplombierung. Beitr Klin Chir 9:804–810Google Scholar
  259. 259.
    Gluck T (1891) Referat über die durch das moderne chirurgische. Langenbecks Arch Klin Chir 41:187–239Google Scholar
  260. 260.
    Muster D (1990) Themistocles Gluck, Berlin 1890: a pioneer of multidisciplinary applied research into biomaterials for endoprostheses. Bull Hist Dent 38:3–6Google Scholar
  261. 261.
    Eynon-Lewis NJ, Ferry D, Pearse MF (1992) Themistocles Gluck: an unrecognised genius. BMJ 305:1534–1536Google Scholar
  262. 262.
    Weinberger BW (1948) An introduction to the history of dentistry with medical and dental chronology and bibliographic data. The CV Mosby Company, St. Louis, p 992Google Scholar
  263. 263.
    Baden E (1955) Prosthetic therapy of congenital and acquired clefts on the palate: an historical essay. J Hist Med Alld Sci 10:290–301Google Scholar
  264. 264.
    Ratner BD, Bryant SJ (2004) Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng 6:41–75Google Scholar
  265. 265.
    Dammaschke T (2008) The history of direct pulp capping. J Hist Dent 56:9–23Google Scholar
  266. 266.
    Albee FH (1915) Bone-graft surgery. WB Saunders Company, Philadelphia/London, p 417Google Scholar
  267. 267.
    Hey Groves EW (1927) Some contributions to the reconstructive surgery of the hip. Br J Surg 14:486–517Google Scholar
  268. 268.
    Murray CR (1931) Delayed and non-union in fractures in the adult. Ann Surg 93:961–967Google Scholar
  269. 269.
    Murray CR (1931) The modern conception of bone formation and its relation to surgery. J Dent Res 11:837–845Google Scholar
  270. 270.
    Huggins C (1931) The formation of bone under the influence of epithelium of the urinary tract. Arch Surg 22:377–408Google Scholar
  271. 271.
    Levander G (1934) On the formation of new bone in bone transplantation. Acta Chir Scand 74:425–426Google Scholar
  272. 272.
    Levander G (1938) A study of bone regeneration. Surg Gynecol Obstet 67:705–714Google Scholar
  273. 273.
    Haldeman KO, Moore JM (1934) Influence of a local excess of calcium and phosphorus on the healing of fractures-an experimental study. Arch Surg 29:385–396Google Scholar
  274. 274.
    Stewart WJ (1934) Experimental bone regeneration using lime salts and autogenous grafts as sources of available calcium. Surg Gynecol Obstet 59:867–871Google Scholar
  275. 275.
    Key JA (1934) The effect of a local calcium depot on osteogenesis and healing of fractures. J Bone Joint Surg 16:176–184Google Scholar
  276. 276.
    Shands AR Jr (1937) Studies in bone formation: the effect of the local presence of calcium salts on osteogenesis. J Bone Joint Surg 19:1065–1076Google Scholar
  277. 277.
    Schram WR, Fosdick LS (1948) Stimulation of healing in long bones by use of artificial material. J Oral Surg 6:209–217Google Scholar
  278. 278.
    Ray RD, Ward AA Jr (1951) A preliminary report on studies of basic calcium phosphate in bone replacement. Surg Form 3:429–434Google Scholar
  279. 279.
    McClendon JF, Carpousis A (1945) Prevention of dental caries by brushing the teeth with powdered fluorapatite. J Dent Res 24:199Google Scholar
  280. 280.
    Earle WR, Schilling EL, Stark TH, Straus NP, Brown MF, Shelton E (1943) Production of malignancy in vitro IV. The mouse fibroblast cultures and changes seen in the living cells. J Natl Cancer Inst 4:165–212Google Scholar
  281. 281.
    Hanks JH, Wallace RE (1949) Relation of oxygen and temperature in the preservation of tissues by refrigeration. Proc Soc Exp Biol Med 71:196–200Google Scholar
  282. 282.
    Kingery WD II (1950) Cold-setting properties. J Am Ceram Soc 33:242–246Google Scholar
  283. 283.
    Dorozhkin SV (2009) Calcium orthophosphate cements and concretes. Materials 2:221–291Google Scholar
  284. 284.
    Dorozhkin SV (2011) Self-setting calcium orthophosphate formulations: cements, concretes, pastes and putties. Int J Mater Chem 1:1–48Google Scholar
  285. 285.
    Driskell TD, Heller AL, Koenigs JF (1975) Dental treatments. US Patent 3,913,229, 21 Oct 1975Google Scholar
  286. 286.
    Köster K, Karbe E, Kramer H, Heide H, König R (1976) Experimenteller Knochenersatz durch resorbierbare Calciumphosphat-Keramik. Langenbecks Arch Chir 341:77–86Google Scholar
  287. 287.
    LeGeros RZ, Chohayeb A, Shulman A (1982) Apatitic calcium phosphates: possible dental restorative materials. J Dent Res Spec Iss 61:343Google Scholar
  288. 288.
    Brown WE, Chow LC (1983) A new calcium phosphate setting cement. J Dent Res Spec Iss 62:672Google Scholar
  289. 289.
    Robinson RA, Watson ML (1955) Crystal-collagen relationships in bone as observed in the electron microscope III Crystal and collagen morphology as a function of age. Ann NY Acad Sci 60:596–660Google Scholar
  290. 290.
    Posner AS, Stutman JM, Lippincott ER (1960) Hydrogen-bonding in calcium-deficient hydroxyapatites. Nature 188:486–487Google Scholar
  291. 291.
    Hayek E, Newesely H (1963) Pentacalcium monohydroxyorthophosphate (hydroxylapatite). In: Kleinberg J (ed) Inorganic syntheses, vol VII. McGraw-Hill Book Company Inc., New York, pp 63–65Google Scholar
  292. 292.
    Kay MI, Young RA, Posner AS (1964) Crystal structure of hydroxyapatite. Nature 204:1050–1052Google Scholar
  293. 293.
    LeGeros RZ (1965) Effect of carbonate on the lattice parameters of apatite. Nature 206:403–404Google Scholar
  294. 294.
    Levitt SR, Crayton PH, Monroe EA, Condrate RA (1969) Forming methods for apatite prostheses. J Biomed Mater Res 3:683–684Google Scholar
  295. 295.
    Bhaskar SN, Brady JM, Getter L, Grower MF, Driskell T (1971) Biodegradable ceramic implants in bone. Electron and light microscopic analysis. Oral Surg Oral Med Oral Pathol 32:336–346Google Scholar
  296. 296.
    Blakeslee KC, Condrate RA Sr (1971) Vibrational spectra of hydrothermally prepared hydroxyapatites. J Am Ceram Soc 54:559–563Google Scholar
  297. 297.
    Garrington GE, Lightbody PM (1972) Bioceramics and dentistry. J Biomed Mater Res 6:333–343Google Scholar
  298. 298.
    Cini L, Sandrolini S, Paltrinieri M, Pizzoferrato A, Trentani C (1972) Materiali bioceramici in funzione sostitutiva. Nota preventiva. [Bioceramic materials for replacement purposes. Preliminary note]. Chir Organi Mov 60:423–430Google Scholar
  299. 299.
    Rivault MA (1966) Evolution, conception et technologie des travaux de prothèse fixe, réalisés en céramo-métallique. [Evolution, conception and technology of fixed prosthesis made of ceramic and metal]. Rev Fr Odontostomatol 13:1367–1402Google Scholar
  300. 300.
    Dumont A, Appel M, Favard E (1968) Prothèses plurales en céramique sur métal. Soudage et artifices de jonction. [Multiple prostheses made of ceramics on metal. Soldering and artifacts of the junction]. Ann Odontostomatol (Lyon) 25:231–240Google Scholar
  301. 301.
    Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH (1970) Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res 4:433–456Google Scholar
  302. 302.
    Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 2:117–141Google Scholar
  303. 303.
    Griffin WL, Åmli R, Heier KS (1972) Whitlockite and apatite from lunar rock 14310 and from Ödegården, Norway. Earth Planet Sci Lett 15:53–58Google Scholar
  304. 304.
    Reed GW Jr, Jovanovic S (1973) Fluorine in lunar samples: implications concerning lunar fluorapatite. Geochim Cosmochim Acta 37:1457–1462Google Scholar
  305. 305.
    Graham FL, van der Eb AJ (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467Google Scholar
  306. 306.
    Driskell TD, Hassler CR, Tennery VJ, McCoy LR, Clarke WJ (1973) Calcium phosphate resorbable ceramics: a potential alternative to bone grafting. J Dent Res 52:123Google Scholar
  307. 307.
    McConnell D (1973) Apatite its crystal chemistry, mineralogy, utilization, and geologic and biologic occurrences, vol 5, Applied mineralogy. Springer, New York, p 111Google Scholar
  308. 308.
    Nery EB, Lynch KL, Hirthe WM, Mueller KH (1975) Bioceramic implants in surgically produced infrabony defects. J Periodontol 46:328–347Google Scholar
  309. 309.
    Roberts SC Jr, Brilliant JD (1975) Tricalcium phosphate as an adjunct to apical closure in pulpless permanent teeth. J Endod 1:263–269Google Scholar
  310. 310.
    Denissen HW, de Groot K (1979) Immediate dental root implants from synthetic dense calcium hydroxylapatite. J Prosthet Dent 42:551–556Google Scholar
  311. 311.
    León B, Jansen JA (eds) (2009) Thin calcium phosphate coatings for medical implants. Springer, New York, p 326Google Scholar
  312. 312.
    Dorozhkn SV (2012) Calcium orthophosphate coatings, films and layers. Prog Biomater 1:1–40Google Scholar
  313. 313.
    Sudo SZ, Schotzko NK, Folke LEA (1976) Use of hydroxyapatite coated glass beads for preclinical testing of potential antiplaque agents. Appl Environ Microbiol 32:428–437Google Scholar
  314. 314.
    Bonfield W, Grynpas MD, Tully AE, Bowman J, Abram J (1981) Hydroxyapatite reinforced polyethylene – a mechanically compatible implant material for bone replacement. Biomaterials 2:185–189Google Scholar
  315. 315.
    Bonfield W, Bowman J, Grynpas MD (1981) Composite material for use in orthopaedics. UK Patent 8,032,647Google Scholar
  316. 316.
    Jarcho M, Bolen CH, Thomas MB, Bobick J, Kay JF, Doremus RH (1976) Hydroxylapatite synthesis and characterization in dense polycrystalline form. J Mater Sci 11:2027–2035Google Scholar
  317. 317.
    Jarcho M, O’Connor JR, Paris DA (1977) Ceramic hydroxylapatite as a plaque growth and drug screening substrate. J Dent Res 56:151–156Google Scholar
  318. 318.
    Jarcho M, Salsbury RL, Thomas MB, Doremus RH (1979) Synthesis and fabrication of β-tricalcium phosphate ceramics for potential prosthetic applications. J Mater Sci 14:142–150Google Scholar
  319. 319.
    Jarcho M (1981) Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Rel Res 157:259–278Google Scholar
  320. 320.
    Rejda BV, Peelen JGJ, de Groot K (1977) Tricalcium phosphate as a bone substitute. J Bioeng 1:93–97Google Scholar
  321. 321.
    de Groot K (1980) Bioceramics consisting of calcium phosphate salts. Biomaterials 1:47–50Google Scholar
  322. 322.
    de Groot K (ed) (1983) Bioceramics of calcium phosphate. CRC Press, Boca Raton, p 146Google Scholar
  323. 323.
    Aoki H, Kato KM, Ogiso M, Tabata T (1977) Studies on the application of apatite to dental materials. J Dent Eng 18:86–89Google Scholar
  324. 324.
    Kato K, Aoki H, Tabata T, Ogiso M (1959) Biocompatibility of apatite ceramics in mandibles. Biomater Med Dev Artif Organs 7:291–297Google Scholar
  325. 325.
    Akao M, Aoki H, Kato K (1981) Mechanical properties of sintered hydroxyapatite for prosthetic applications. J Mater Sci 16:809–812Google Scholar
  326. 326.
    Akao M, Aoki H, Kato K, Sato A (1982) Dense polycrystalline β-tricalcium phosphate for prosthetic applications. J Mater Sci 17:343–346Google Scholar
  327. 327.
    Bohner M (2011) Private communicationGoogle Scholar
  328. 328.
    Roy DM, Linnehan SK (1974) Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 247:220–222Google Scholar
  329. 329.
    Holmes RE (1979) Bone regeneration within a coralline hydroxyapatite implant. Plast Reconstr Surg 63:626–633Google Scholar
  330. 330.
    Elsinger EC, Leal L (1996) Coralline hydroxyapatite bone graft substitutes. J Foot Ankle Surg 35:396–399Google Scholar
  331. 331.
    Shipman P, Foster G, Schoeninger M (1984) Burnt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage. J Archaeol Sci 11:307–325Google Scholar
  332. 332.
    LeGeros RZ, LeGeros JP (2003) Calcium phosphate bioceramics: past, present, future. Key Eng Mater 240–242:3–10Google Scholar
  333. 333.
    Randzio J, Thoma K, Alex R, Rhomberg B (1985) Einheilung und Pharmakokinetik einer β-Trikalziumphosphat-Gentamicin-Kombination im Tierversuch (vorläufige Mitteilung). Dtsch Zahnarztl Z40:668–671Google Scholar
  334. 334.
    Dorozhkin SV (2012) Biphasic, triphasic and multiphasic calcium orthophosphates. Acta Biomater 8:963–977Google Scholar
  335. 335.
    Anuta DA, Richardson D (1985) Biphasic hydroxyapatite/beta-tricalcium phosphate granules bound in polymerized methyl methacrylate: bone substitute studies. In: Transactions of the annual meeting of the society for biomaterials in conjunction with the internal, vol 8, p 62Google Scholar
  336. 336.
    Moore DC, Chapman MW, Manske DJ (1985) Evaluation of a new biphasic calcium phosphate ceramic for use in grafting long bone diaphyseal defects. Transactions of the annual meeting of the society for biomaterials in conjunction with the Internal, vol 8, p 160Google Scholar
  337. 337.
    Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. J Biomed Mater Res 24:721–734Google Scholar
  338. 338.
    Dorozhkin SV (2009) Nanodimensional and nanocrystalline apatites and other calcium orthophosphates in biomedical engineering, biology and medicine. Materials 2:1975–2045Google Scholar
  339. 339.
    Dorozhkin SV (2012) Nanodimensional and nanocrystalline calcium orthophosphates. Am J Biomed Eng 2:48–97Google Scholar
  340. 340.
    Layrolle P, Lebugle A (1994) Characterization and reactivity of nanosized calcium phosphate prepared in anhydrous ethanol. Chem Mater 6:1996–2004Google Scholar
  341. 341.
    Cui FZ, Wen HB, Zhang HB, Ma CL, Li HD (1994) Nanophase hydroxyapatite-like crystallites in natural ivory. J Mater Sci Lett 13:1042–1044Google Scholar
  342. 342.
    Li YB, de Wijn J, Klein CPAT, de Meer SV, de Groot K (1994) Preparation and characterization of nanograde osteoapatite-like rod crystals. J Mater Sci Mater Med 5:252–255Google Scholar
  343. 343.
    Li YB, de Groot K, de Wijn J, Klein CPAT, de Meer SV (1994) Morphology and composition of nanograde calcium phosphate needle-like crystals formed by simple hydrothermal treatment. J Mater Sci Mater Med 5:326–331Google Scholar
  344. 344.
    Shirkhanzadeh M (1994) X-ray diffraction and Fourier transform infrared analysis of nanophase apatite coatings prepared by electrocrystallization. Nanostruct Mater 4:677–684Google Scholar
  345. 345.
    Norman ME, Elgendy HM, Shors EC, El-Amin SF, Laurencin CT (1994) An in-vitro evaluation of coralline porous hydroxyapatite as a scaffold for osteoblast growth. Clin Mater 17:85–91Google Scholar
  346. 346.
    Dekker RJ, de Bruijn JD, van den Brink I, Bovell YP, Layrolle P, van Blitterswijk CA (1998) Bone tissue engineering on calcium phosphate-coated titanium plates utilizing cultured rat bone marrow cells: a preliminary study. J Mater Sci Mater Med 9:859–863Google Scholar
  347. 347.
    Friedman CD, Costantino PD (1998) Hydroxyapatite cement, a smart biomaterial for craniofacial skeletal tissue engineering. Surg Technol Int 7:421–423Google Scholar
  348. 348.
    Friedman CD, Costantino PD, Takagi S, Chow LC (1998) BoneSource™ hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mater Res 43:428–432Google Scholar
  349. 349.
    Misra DN (ed) (1984) Adsorption on and surface chemistry of hydroxyapatite. Plenum Press, New York, p 192Google Scholar
  350. 350.
    LeGeros RZ (1991) Calcium phosphates in oral biology and medicine, vol 15, Monographs in oral science. Karger, Basel, p 201Google Scholar
  351. 351.
    Aoki H (1991) Science and medical applications of hydroxyapatite. JAAS, Tokyo, pp 214–352Google Scholar
  352. 352.
    Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates: studies in inorganic chemistry, vol 18. Elsevier, Amsterdam, p 389Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.MoscowRussia

Personalised recommendations