Skip to main content

Introduction to Synthetic and Biologic Apatites

  • Chapter
  • First Online:
Advances in Calcium Phosphate Biomaterials

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 2))

Abstract

In the early 1970s, bioceramics were employed to perform singular, biologically inert roles, such as to provide parts for bone replacement. The realization that cells and tissues perform many other vital regulatory and metabolic roles has highlighted the limitations of synthetic materials as tissue substitutes. Demands of bioceramics have changed from maintaining an essentially physical function without eliciting a host response to providing a more integrated interaction with the host. This has been accompanied by increasing demands from medical devices to improve the quality of life, as well as extend its duration. Bioceramics especially hydroxyapatite incorporating biologic additives can be used as body interactive materials, helping the body to heal or promoting regeneration of tissues, thus restoring physiological functions. The crystallography and characterization of biologic and synthetic apatites are very complex. This chapter attempts to cover over four decades of research on one of the most intriguing and fascinating fields of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Naray-Szabo S (1930) The structure of apatite (CaF)Ca4(PO4)3. Z Kristallogr 75:387–398

    Google Scholar 

  2. Beevers CA, Mcintyre DB (1956) The atomic structure of fluorapatite and its relation to that of tooth and bone mineral. Miner Mater 27:254–259

    Article  Google Scholar 

  3. Young RA, Elliott JC (1966) Atomic scale bases for several properties of apatites. Arch Oral Biol 11:699–707

    Article  Google Scholar 

  4. Deer WA, Howie RA, Zussman J (1985) An introduction to the rock forming mineral. Longman, Hong Kong, pp 504–509

    Google Scholar 

  5. de Jong WF (1926) La Substance Minérale Dans les Os. Rec Trav Chim Pays-Bas 45:445–448

    Article  Google Scholar 

  6. Kay M, Young RA, Posner AS (1964) The crystal structure of hydroxyapatite. Nature 204:1050–1052

    Article  Google Scholar 

  7. Carlstroem D (1955) X-ray crystallographic studies on apatite and calcified tissues. Acta Radiol Suppl 121:1–59

    Google Scholar 

  8. McConnell D (1952) The crystal chemistry of carbonate apatites and their relationship to the composition of calcified tissue. J Dent Res 31:53–63

    Article  Google Scholar 

  9. Elliott JC (1964) The crystallographic structure of dental enamel and related apatites. PhD thesis, University of London

    Google Scholar 

  10. Bonel G, Montel G (1964) Surune nouvelle apatite carbonatée synthétique. C R Acad Sci Paris 258:923–926

    Google Scholar 

  11. Zapanta-LeGeros R (1965) Effect of carbonate on the lattice parameters of apatite. Nature 206:403

    Article  Google Scholar 

  12. LeGeros RZ, Trautz OR, LeGeros JP (1961) Apatite crystallites: effect of carbonate on morphology. Science 155:1409–1411

    Article  Google Scholar 

  13. LeGeros RZ (1981) Apatites in biological systems. Prog Cryst Growth Character 4:1–45

    Article  Google Scholar 

  14. Rey C, Renugopalakrishnan V, Collins B (1991) Fourier transform infrared spectroscopic study of the carbonate ions in bone mineral during aging. Calcif Tissue Int 49:251–258

    Article  Google Scholar 

  15. Jarcho M (1981) Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res 157:259–278

    Google Scholar 

  16. de Groot K (1983) Bioceramics of calcium phosphates. CRC Press, Boca Raton

    Google Scholar 

  17. Aoki H, Kato K, Ogiso M (1971) Studies on the application of apatite to dental materials. J Dent Eng 18:86–89

    Google Scholar 

  18. Daculsi G, Passuti N, Martin S, LeGeros RZ (1990) Macroporous biphasic calcium phosphate ceramic for long bone surgery in human and dogs: clinical and histological study. J Biomed Mater Res 4:379–396

    Article  Google Scholar 

  19. Metsger DS, Driskell TD, Paulsrud JR (1982) Tricalcium phosphate ceramic–a resorbable bone implant: review and current status. J Am Dent Assoc 105(6):1035–1038

    Google Scholar 

  20. LeGeros RZ (1988) Calcium phosphate materials in restorative dentistry: review. Adv Dent Res 2:164–180

    Google Scholar 

  21. Schopper C, Moser D, Sabbas A, Lagogiannis G, Spassova E, König F, Donath K, Ewers R (2003) The fluorohydroxyapatite (FHA) FRIOS Algipore is a suitable biomaterial for the reconstruction of severely atrophic human maxillae. Clin Oral Implants Res 14(6):743–749

    Article  Google Scholar 

  22. Holmes RE (1979) Bone regeneration within a coralline hydroxyapatite implant. Plast Reconstr Surg 63:626–633

    Article  Google Scholar 

  23. Ben-Nissan B, Chai C, Evans L (1995) Crystallographic, and spectroscopic characterization and morphology of biogenic and synthetic apatites. In: Wise DL (ed) Encyclopedic handbook of biomaterials and bioengineering: Part B Applications, vol 1. Marcel Dekker, New York, pp 191–221

    Google Scholar 

  24. LeGeros RZ (1991) Calcium phosphates in oral biology and medicine. In: Myers H, Karger S (eds) Monographs in oral sciences, vol 15. Karger, Basel

    Google Scholar 

  25. Boskey AL (1985) Overview of cellular elements and macromolecules implicated in the initiation of mineralization. In: Butler WT (ed) The chemistry and biology of mineralized tissues. EBSCO Media, Birmingham, pp 335–343

    Google Scholar 

  26. LeGeros RZ, Pan CM, Suga S, Watabe N (1985) Crystallo­chemical properties of apatites in atremate brachiopod shells. Calcif Tissue lnt 37:651–658

    Article  Google Scholar 

  27. LeGeros RZ, Bautista C, Wong JL, LeGeros A, LeGeros JP (1994) Biological apatites in modern and fossil shark teeth and in calcified fish scales. Bull de l’Institut Oceanographique 14:229–236

    Google Scholar 

  28. LeGeros RZ (2001) Formation and transformation of calcium phosphates: relevance to vascular calcification. Z Kardiol 90(Suppl 3):116–124

    Google Scholar 

  29. LeGeros RZ, Salcae T, Bautista C (1996) Magnesium and carbonate in enamel and synthetic apatites. Adv Dent Res 10:225–231

    Article  Google Scholar 

  30. Okazaki M, LeGeros RZ (1992) Crystallographic and chemical properties of Mg-containing apatites before and after suspension in solutions. Magnes Res 5:103–108

    Google Scholar 

  31. LeGeros RZ, Tung MS (1983) Chemical stability of carbonate and fluoride containing apatites. Caries Res 17:419–429

    Article  Google Scholar 

  32. LeGeros RZ, LeGeros JP, Trautz OR, Klein E (1971) Conversion of monetite, CaHPO4, to carbonate apatite: effect on crystallinity. Adv X-ray Appl 14:57–66

    Google Scholar 

  33. Margolis HC, Moreno EC (1985) Kinetic and thermodynamic aspects of enamel demineralization. Caries Res 19:22–35

    Article  Google Scholar 

  34. LeGeros RZ (1982) Chemical and crystallographic events in caries. J Dent Res 69:567–574

    Google Scholar 

  35. Driessens FCM (1982) In moral aspects of dentistry. In: Myers HM (ed) Monographs in oral sciences, vol 10. Karger, Basel

    Google Scholar 

  36. LeGeros RZ (1975) The unit-cell dimensions of human enamel apatite: effect of chloride incorporation. Arch Oral Biol 20:63–71

    Article  Google Scholar 

  37. LeGeros RZ, LeGeros JP, Bonel G (1979) Types of ‘H2O’ in human enamel and in precipitated apatites. Calcif Tissue Res 26:111–116

    Article  Google Scholar 

  38. LeGeros RZ, LeGeros JP, Trautz OR, Klein E (1970) Spectral properties of carbonate in carbonate-containing apatites. Dev Appl Spectrosc 7:3–12

    Article  Google Scholar 

  39. Moreno EG, Kresak M, Zahradnik RT (1977) Physicochemical aspects of fluoride-apatite systems relevant to the study of dental caries. Caries Res 11(1):142–171

    Article  Google Scholar 

  40. LeGeros RZ, Silverstone LM, Daculsi G, Kerebel LM (1983) In vitro caries-like lesion formation in F-containing tooth enamel. J Dent Res 62:138–144

    Article  Google Scholar 

  41. Dean HT, Arnold FA Jr, Elvove E (1942) Domestic water and dental caries. V. Additional studies of the relations of fluoride domestic waters to dental caries experience in 4,425 white children aged 12 to 14 year, of 13 cities in 4 states. Public Health Rep 57:115–125

    Article  Google Scholar 

  42. LeGeros RZ, Singer L, Ophaug R, Qujrolgico G, LeGeros JP (1982) The effect of fluoride on the stability of synthetic and biological (bone mineral) apatites. In: Menczel J, Robin GC, Makin M (eds) Osteoporosis. Wiley, New York, pp 327–341

    Google Scholar 

  43. Robinson C, Kirkham J (1990) The effect of fluoride on the developing mineralized tissues. J Dent Res 69(Spec No: 685–691):184–185

    Google Scholar 

  44. Pak CYC, Sakhaee K, Bell NK, Licata A, Johnson C, Rubine B (1996) Comparison of non-randomized trials with slow-release sodium fluoride with a randomized placebo­ controlled trial in postmenopausal osteoporosis. J Bone Miner Res 11:160–168

    Article  Google Scholar 

  45. Kleerkoper M (1996) Auoride and the skeleton. In: Bilezlkian JP, Raisz LG, Rodan FA (eds) Principles of bone biology. Academic, San Diego, pp 1053–1062

    Google Scholar 

  46. Ito A, Nakamura S, Aoki H, Akao M, Traoka K, Tsutsumi S, Qnuma K, Tateishi T (1990) Hydrothermal growth of carbonate containing hydroxyapatite single crystals. J Cryst Growth 163:311–317

    Article  Google Scholar 

  47. Hattori T, Iwadate Y (1990) Hydrothermal preparation of calcium hydroxyapatite powders. J Am Ceram Soc 73:1803–1805

    Article  Google Scholar 

  48. Pena J, LeGeros RZ, Rohanizadeh R, LeGeros JP (2001) CaCO3-biphasic materials prepared by microwave processing of natural aragonite and calcite. Key Eng Mater 192–195:267–270

    Article  Google Scholar 

  49. Lerner E, Sarig S, Azoury R (1991) Enhance maturation of hydroxyapatite from aqueous solutions using microwave irradiation. J Mater Sci Mater Med 2:138–141

    Article  Google Scholar 

  50. Milev AS (2002) Chemistry, synthesis and morphological stability of sol-gel derived carbonate substituted plate­like hydroxyapatite. PhD thesis, University of Technology, Sydney

    Google Scholar 

  51. Deptula A, Lada W, Olczak T, Sarowska S, LeGeros RZ, LeGeros JP (1998) Complex Sol-gel process (CSGP) preparation of calcium phosphate biomaterials (powders, monoliths, fibers). In: Bioceramics, vol II. World Scientific Publishing, Singapore, pp 743–746

    Google Scholar 

  52. LeGeros RZ, Morales P (1973) Renal stone crystals grown in gel systems. Invest Urol 11:12–20

    Google Scholar 

  53. Vijayragbavan TV, Bensalem A (1994) Electrodeposition of apatite coating on pure titanium and titanium alloys. J Mater Sci Lett 13(24):1782–1785

    Article  Google Scholar 

  54. LeGeros JP, Lin S, LeGeros RZ, Legeros JP (2000) Chemically deposited CaP coating on titanium alloy. J Dent Res 79:560–572

    Google Scholar 

  55. Rohanizadeh R, LeGeros RZ, Harsono M, Ben-David A (2004) Adherent apatite coating on titanium substrate using chemical deposition. J Biomed Mater Res 72A:428–438

    Article  Google Scholar 

  56. Kokubo T (1996) Formation of biologically active bone-like apatite on metals and polymers by a biomimetic process. Thermochim Acta 280–281:479–490

    Article  Google Scholar 

  57. Hayek E, Newesely H, Rumpel ML (1963) Pentacalcium monohydroxyorthophosphate. In: Kleinberg J (ed) Inorganic syntheses, vol 7. Wiley, Hoboken, pp 63–69

    Chapter  Google Scholar 

  58. LeGeros RZ, Go P, Vandemaele KH, Quirolgico GB, LeGeros DJ (1980) Transformation of calcium carbonates and calcium phosphates to carbonate apatites: possible mechanism for phosphorite formation. In: Proceedings 2nd international congress on phosphorous compounds, Morocco Institut de Mondial de Phosphate, Boston, 21–25 Apr 1980, pp 41–54

    Google Scholar 

  59. LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP (2003) Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med 14:201–210

    Article  Google Scholar 

  60. Brown WE, Chow LC (1987) A new calcium phosphate water setting cement. In: Brown PW (ed) Cements research progress. American Ceramic Society, Westerville

    Google Scholar 

  61. Niwa S, LeGeros RZ (2002) Injectable calcium phosphate cements for repair of bone defects. In: Lewandrowski KU, Wise DL, Trantolo DJ, Gresser JD (eds) Tissue engineering and biodegradable equivalents: scientific and clinical applications. Marcel Dekker Inc., New York, pp 385–500

    Google Scholar 

  62. Albee FH (1920) Studies in bone growth: triple calcium phosphate as a stimulus to osteogenesis. Ann Surg 71:32–36

    Article  Google Scholar 

  63. Nery EB, Lynch KL, Hirtbe WM, Mueller KH (1978) Preliminary clinical studies of bioceramics in periodontal osseous defects. J Periodontal 49:523–527

    Article  Google Scholar 

  64. Ellinger RF, Mery EG, Lynch KL (1986) Histological assessment of periodontal osseous defects following implantation of hydroxyapatite and biphasic calcium phosphate ceramics: a case report. J Periodontics Restor Dent 3:223–233

    Google Scholar 

  65. LeGeros RZ, Daculsi G, Nery E, Lynch K, Kerebel B (1988) In vivo transformation of biphasic calcium phosphates of varying β-TCP:HA ratios: ultrastructural characterization. In: Proceedings of the 3rd world biomaterials congress. Business Center for Academic Societies Japan, Tokyo

    Google Scholar 

  66. LeGeros RZ, Daculsi D (1997) In vivo transformation of biphasic calcium phosphate ceramics: ultrastructural and physico-chemical characterizations. In: Yamamuro T, Wilson J, Hench LL (eds) Handbook of bioactive ceramics, vol 11. CRC Press, Boca Raton, pp 17–28

    Google Scholar 

  67. Daculsi G, Passuti N (1990) Bioactive ceramics fundamental properties and clinical applications: the Osseo-coalescence process. In: Heimcke G, Oonishi H (eds) Bioceramics, vol 2. Butterworth-Heinemann, Cologne, pp 3–10

    Google Scholar 

  68. Wykrota LL, Garrido CA, Wykrota FH (1998) Clinical evaluation of biphasic calcium phosphate ceramic used in orthopaedic lesions. In: LeGeros RZ, LeGeros JP (eds) Bioceramics, vol 11. World Scientific Publishing, Singapore, p 64

    Google Scholar 

  69. Nery E, LeGeros RZ, Lynch KL, Lee K (1992) Tissue response to biphasic calcium phosphate ceramic with different ratios of HA/β-TCP in periodontal osseous defects. J Periodontol 63:729–735

    Article  Google Scholar 

  70. Roy DL, Linnehan SK (1974) Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 247:220–222

    Article  Google Scholar 

  71. LeGeros RZ, Bautista C, LeGeros JP, Vijaragbavan TV, Retino M (1995) Comparative properties of bioactive bone graft materials. In: Sedel L (ed) Bioceramics, vol 8. Pergamon Press, London, pp 1–7

    Google Scholar 

  72. Berndt CC, Haddad GN, Farmer AJD, Gross KA (1990) Review: thermal spraying for bioceramic applications. Mater Forum 14:161–173

    Google Scholar 

  73. LeGeros RZ, LeGeros JP, Kim Y, Kijkowska R, Zheng R, Bautista C, Wong JL (1995) Calcium phosphates in plasma-sprayed HA coatings. Ceram Trans 48:173–189

    Google Scholar 

  74. Lin S, LeGeros RZ, LeGeros JP (2003) Adherent octacalcium phosphate coating on titanium alloy using a modulated electrochemical deposition method. J Biomed Mater Res 66A:8228

    Google Scholar 

  75. Salgado T, LeGeros JP, Wang J (1998) Effect of alumina and apatitic abrasives on TI alloy substrate S. In: Ohgushi H (ed) Bioceramics, vol 11. World Scientific Publishing, Singapore, p 686

    Google Scholar 

  76. Doyle C (1990) Bioactive composites in orthopaedics. In: Yamamuro T, Hench LL, Hench LL, Wilson-Hench J (eds) Handbook of bioactive ceramics, vol 2. CRC Press, Boca Raton, pp 195–207

    Google Scholar 

  77. Okazaki M, Ohmae H, Hino T (1989) Insolubilization of apatite-collagen composites by UV irradiation. Biomaterials 10:564–568

    Article  Google Scholar 

  78. Ohgushi H, Caplan AI (1999) Stem cell technology and bioceramics: from cell to gene engineering. J Biomed Mater Res Appl Biomater 48:913–927

    Article  Google Scholar 

  79. Toquet J, Rohanizadeh R, Guicheux J, Daculsi G (1999) Osteogenic potential in vitro of human bone marrow cells cultured on macroporous biphasic calcium phosphate ceramic. J Biomed Mater Res 44:98–109

    Article  Google Scholar 

  80. LeGeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthopaed Relat Res 395:81–98

    Article  Google Scholar 

  81. Klawitter JJ (1979) A basic investigation of bone growth in porous materials. PhD thesis Clemson University, Clemson

    Google Scholar 

  82. Hubbard W (1974) Physiological calcium phosphate as orthopaedic implant material. PhD thesis, Marquette University, Milwaukee

    Google Scholar 

  83. Harada Y, Want JT, Doppalppudi VA, Willis AA, Goldring SR (1996) Differential effects of different forms of hydroxyapatite and hydroxyapatite tricalcium phosphate particles on human monocyte/macrophages in vitro. J Biomed Mater Res 31:19–26

    Article  Google Scholar 

  84. Hench LL (1994) Bioceramics: from concept to clinic. J Am Ceram Soc 74:l487–l1510

    Google Scholar 

  85. Osborn JF, Newesely H (1980) The material science of calcium phosphate ceramic. Biomaterials 1:108–111

    Article  Google Scholar 

  86. Heogbebaert M, LeGeros RZ, Gineste M, Guilhern M, Bonel G (1988) Physico-chemical characterization of deposits associated with HA ceramics implanted in non-osseous sites. J Biomed Mater Res 22:257–268

    Article  Google Scholar 

  87. LeGeros RZ, Daculsi G, Orly I (1991) Substrate surface dissolution and interfacial biological mineralization. In: Davies JE (ed) The BoM biomaterials interface. University of Toronto Press, Toronto, pp 76–88

    Google Scholar 

  88. Urist MR (1965) Bone formation by autoinduction. Science 150:893–898

    Article  Google Scholar 

  89. Ripamonti U, Ma S, Reddi AH (1992) The critical role of geometry of porous hydroxyapatite delivery system induction of bone by osteogenin, a bone morphogenetic protein. Matrix 12(3):202–212

    Article  Google Scholar 

  90. Le Nihouannen D, Daculsi G, Saffarzadeh A, Gauthier O, Delplace S, Pilet P, Layrolle P (2005) Ectopic bone formation by microporous calcium phosphate ceramic particles in sheep muscles. Bone 36(6):1086–1093

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Besim Ben-Nissan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

LeGeros, R.Z., Ben-Nissan, B. (2014). Introduction to Synthetic and Biologic Apatites. In: Ben-Nissan, B. (eds) Advances in Calcium Phosphate Biomaterials. Springer Series in Biomaterials Science and Engineering, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53980-0_1

Download citation

Publish with us

Policies and ethics