Skip to main content

Biomineralization in Marine Organisms

  • Chapter
Springer Handbook of Marine Biotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter describes biominerals and the marine organisms that produce them. The proteins involved in biomineralization, as well as functions of the biomineralized structures, are treated. Current and future applications of bioinspired material synthesis in engineering and medicine highlight the enormous potential of biomineralization in marine organisms and the status, challenges, and prospects regarding successful marine biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BSP:

sialoprotein

CdS:

cadmium sulfide

Cr:

chromium

DNA:

deoxyribonucleic acid

MEMS/NEMS:

micro- and nanoelectromechanical systems

MEMS:

microelectromechanical system

MISS:

microbially induced sedimentary structures

Ni:

nickel

PSP:

paralytic shellfish poisoning

RNA:

ribonucleic acid

SLRP:

small leucine-rich repeat proteoglycan

UV:

ultraviolet

References

  1. Ocean Studies Board, Board on Life Sciences: Marine Biotechnology in the Twenty-First century: Problems, Promise, and Products (The National Academic, Washington 2002)

    Google Scholar 

  2. J.J. De Yoreo, P.M. Dove: Shaping crystals with biomolecules, Science 306(5700), 1301–1302 (2004)

    Article  Google Scholar 

  3. J. Seto (Ed.): Advanced Topics in Biomineralization (InTech, Rijeka, Shanghai 2012)

    Google Scholar 

  4. S. Mann: Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry (Oxford Univ. Press, Oxford 2001)

    Google Scholar 

  5. M. Brasier: Why do lower plants and animals biomineralize?, Paleobiology 12(3), 241–250 (1986)

    Google Scholar 

  6. D.G. Mann, S.J.M. Droop: 3. Biodiversity, biogeography and conservation of diatoms, Hydrobiologia 336(1–3), 19–32 (1996)

    Article  Google Scholar 

  7. J.L. Mero: The Mineral Resources of the Sea (Elsevier, Amsterdam 1965)

    Google Scholar 

  8. G.M. Gadd: Metals, minerals and microbes: Geomicrobiology and bioremediation, Microbiology 156(3), 609–643 (2010)

    Article  CAS  Google Scholar 

  9. W.N.C. Anderson: Hyperaccumulation by plants. In: Element Recovery and Sustainability, ed. by A.J. Hunt (Royal Society of Chemistry, Cambridge 2013) pp. 114–139

    Chapter  Google Scholar 

  10. L.L. Barton, D.E. Northup: Microbial Ecology (Wiley-Blackwell, Hoboken 2011)

    Book  Google Scholar 

  11. E.C. Theil, K.N. Raymond: Transition-Metal Storage, transport, and biomineralization. In: Bioinorganic Chemistry, ed. by I. Bertini, H.B. Gray, S.J. Lippard, J.S. Valentine (University Science Books, Mill Valley 1994) pp. 1–35

    Google Scholar 

  12. J.H. Martin, R.M. Gordon: Northeast Pacific iron distributions in relation to phytoplankton productivity, Deep-Sea Res. 35, 177–196 (1988)

    Article  CAS  Google Scholar 

  13. F. Egami: Minor elements and evolution, J. Mol. Evol. 4(2), 113–120 (1974)

    Article  CAS  Google Scholar 

  14. C. Sennett, L.E. Rosenberg, I.S. Mellman: Transmembrane transport of cobalamin in prokaryotic and eukaryotic cells, Annu. Rev. Biochem. 50, 1053–1086 (1981)

    Article  CAS  Google Scholar 

  15. O.H. Tuovinen, D.P. Kelly: Use of micro-organisms for the recovery of metals, Int. Metall. Rev. 19, 21–31 (1974)

    CAS  Google Scholar 

  16. W.F. McIlhenny, D.A. Ballard: The sea as a source of dissolved chemicals, Proc. 144th Natl. Am. Chem. Soc. Meet., Washington (1963) pp. 122–131

    Google Scholar 

  17. J.C. Deelman: Microbial mineral maricultures, a possibility?, Aquaculture 1, 393–416 (1972)

    Article  Google Scholar 

  18. A. Teske: Deep sea hydrothermal vents. In: The Desk Encyclopedia of Microbiology, 2nd edn., ed. by M. Schaechter (Academia, Oxford 2009) pp. 346–356

    Google Scholar 

  19. W.E.G. Müller (Ed.): Molecular Biomineralization: Aquatic Organisms Forming Extraordinary Materials (Springer, Heidelberg 2011)

    Google Scholar 

  20. H.L. Ehrlich, D.K. Newman: Geomicrobiology, 5th edn. (CRC Press, Boca Raton 2008)

    Book  Google Scholar 

  21. S. Castanier, G. Le Métayer-Levrel, J.-P. Perthuisot: Ca-carbonates precipitation and limestone genesis – The microbiogeologist point of view, Sed. Geol. 126(1–4), 9–23 (1999)

    CAS  Google Scholar 

  22. A. Ridgwell, R.E. Zeebe: The role of the global carbonate cycle in the regulation and evolution of the earth system, Earth Planet. Sci. Lett. 234, 299–315 (2005)

    Article  CAS  Google Scholar 

  23. H. Ehrlich: Biological Materials of Marine Origin: Invertebrates (Biologically-Inspired Systems) (Springer, Dordrecht 2010)

    Book  Google Scholar 

  24. H.A. Lowenstam, S. Weiner: On Biomineralization (Oxford Univ. Press, New York 1989)

    Google Scholar 

  25. S. Weiner, L. Addadi: At the cutting edge (perspectives), Science 298, 375–376 (2002)

    Article  CAS  Google Scholar 

  26. S. Weiner, P.M. Dove: An overview of biomineralization processes and the problem of the vital effect. In: Biomineralization, Reviews in Mineralogy and Geochemistry, Vol. 54, ed. by P.M. Dove, J.J. De Yoreo, S. Weiner (Mineralogical Society of America, Chantilly 2003) pp. 1–29

    Google Scholar 

  27. F. Bosselmann, M. Epple: Sulfate-containing biominerals. In: Biomineralization: From Nature to Application, Metal Ions in Life Sciences, Vol. 4, ed. by A. Sigel, H. Sigel, R.K.O. Sigel (Wiley, Chichester 2008) pp. 207–217

    Google Scholar 

  28. S. Silver: The bacterial view of the periodic table: Specific functions for all elements, Rev. Mineral. Geochem. 35, 345–360 (1997)

    CAS  Google Scholar 

  29. K.N. Thakkar, S.S. Mhatre, R.Y. Parikh: Biological synthesis of metallic nanoparticles, Nanomed. Nanotech. Biol. Med. 6(2), 257–262 (2010)

    Article  CAS  Google Scholar 

  30. H.C. Lichtenegger, T. Schoeberl, J.T. Ruokolainen, J.O. Cross, S.M. Heald, H. Birkedal, J.H. Waite, G.D. Stucky: Zinc and mechanical prowess in the jaws of Nereis, a marine worm, Proc. Natl. Acad. Sci. USA 100(16), 9144–9149 (2003)

    Article  CAS  Google Scholar 

  31. H.C. Lichtenegger, T. Schoeberl, M.H. Bartl, H. Waite, G.D. Stucky: High abrasion resistance with sparse mineralization: Copper biomineral in worm jaws, Science 298(5592), 389–392 (2002)

    Article  CAS  Google Scholar 

  32. W.C. Ghiorse: Biology of iron-and manganese-depositing bacteria, Annu. Rev. Microbiol. 38, 515–550 (1984)

    Article  CAS  Google Scholar 

  33. H. Stolp: Microbial ecology: Organisms, Habitats, Activities (Cambridge Univ. Press, Cambridge 1988)

    Google Scholar 

  34. H.H. Hanert: Bacterial and chemical Iron oxide deposition in a shallow bay on Palea Kameni, Santorini, Greece, Geomicrobiol. J. 19, 317–342 (2002)

    Article  CAS  Google Scholar 

  35. H.H. Hanert: ed. by A. Balows, H. G. Trüper, M. Dworkin, W. Harder, K. H. Schliefer, The genus Gallionella. In: The Prokaryotes, Vol. 4, 2nd edn. (Springer, New York 1992) pp. 4082–4088

    Google Scholar 

  36. D. Emerson, C.L. Moyer: Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi seamount hydrothermal vents and play a major role in Fe oxide deposition, Appl. Environ. Microbiol. 68(6), 3085–3093 (2002)

    Article  CAS  Google Scholar 

  37. K.V. Ewart, Q. Lin, C.L. Hew: Structure, function and evolution of antifreeze proteins, Cell. Mol. Life Sci. 55(2), 271–283 (1999)

    Article  CAS  Google Scholar 

  38. D.A. Bazylinski, R.B. Frankel: Magnetosome formation in prokaryotes, Nat. Rev. Microbiol. 2, 217–230 (2004)

    Article  CAS  Google Scholar 

  39. T.M. Kapłon, A. Michnik, Z. Drzazga, K. Richter, M. Kochman, A. Ożyhara: The rod-shaped conformation of Starmaker, Biochim. Biophys. Act. Prot. Proteom. 1794(11), 1616–1624 (2009)

    Article  Google Scholar 

  40. R.B. Frankel, D.A. Bazylinski: Biologically induced mineralization by bacteria. In: Biomineralization, Reviews in Mineralogy and Geochemistry, Vol. 54, ed. by P.M. Dove, J.J. De Yoreo, S. Weiner (Mineralogical Society of America, Chantilly 2003) pp. 95–114

    Google Scholar 

  41. D.A. Bazylinski, R.B. Frankel, K.O. Konhauser: Modes of biomineralization of magnetite by microbes, Geomicrobiol. J. 24(6), 465–475 (2007)

    Article  CAS  Google Scholar 

  42. J.L. Kirschvink, A. Kobayashi-Kirschvink, B.J. Woodford: Magnetite biomineralization in the human brain, Proc. Natl. Acad. Sci. USA 89(16), 7683–7687 (1992)

    Article  CAS  Google Scholar 

  43. B.L. Smith, T.E. Schäffer, M. Viani, J.B. Thompson, N.A. Frederick, J. Kindt, A. Belcher, G.D. Stucky, D.E. Morse, P.K. Hansma: Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites, Nature 399, 761–763 (1999)

    Article  CAS  Google Scholar 

  44. J. Erez: The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies. In: Biomineralization, Reviews in Mineralogy and Geochemistry, Vol. 54, ed. by P.M. Dove, J.J. De Yoreo, S. Weiner (Mineralogical Society of America, Chantilly 2003) pp. 115–150

    Google Scholar 

  45. M.A. Yurong, Q.I. Limin: Biomineralization of sea urchin teeth, Front. Chem. China 5(3), 299–308 (2010)

    Article  Google Scholar 

  46. F.E. Round, R.M. Crawford, D.G. Mann: Diatoms: Biology and Morphology of the Genera (Cambridge Univ. Press, Cambridge 2007)

    Google Scholar 

  47. I.C. Gebeshuber, H. Stachelberger, M. Drack: Diatom bionanotribology – Biological surfaces in relative motion: Their design, friction, adhesion, lubrication and wear, J. Nanosci. Nanotechnol. 5(1), 79–87 (2005)

    Article  CAS  Google Scholar 

  48. I.C. Gebeshuber, R.M. Crawford: Micromechanics in biogenic hydrated silica: Hinges and interlocking devices in diatoms, Proc. IMechE Part J: J. Eng. Tribol. 220(J8), 787–796 (2006)

    Article  CAS  Google Scholar 

  49. R.O. Ritchie: The conflicts between strength and toughness, Nat. Mater. 10, 817–822 (2011)

    Article  CAS  Google Scholar 

  50. M. Dohrmann, D. Janussen, J. Reitner, A.G. Collins, G. Worheide: Phylogeny and evolution of glass sponges (porifera, hexactinellida), Syst. Biol. 57(3), 388–405 (2008)

    Article  CAS  Google Scholar 

  51. A. Foda, J.H. Vandermeulen, J.J. Wrench: Uptake and conversion of Selenium by a marine bacterium, Canad. J. Fish. Aquat. Sci. 40(S2), 215–220 (1983)

    Article  Google Scholar 

  52. M. Lenz, B. Kolvenbach, B. Gygax, S. Moes, P.F.X. Corvini: Shedding light on Selenium biomineralization: Proteins associated with bionanominerals, Appl. Environ. Microbiol. 77(13), 4676–4680 (2011)

    Article  CAS  Google Scholar 

  53. M. McEnery, J.J. Lee: Tracer studies on calcium and strontium mineralization and mineral cycling in two species of foraminifera, Rosalina leei and Spiroloculina hyaline, Limn. Oceanograph. 15(2), 173–182 (1970)

    Article  CAS  Google Scholar 

  54. H.A. Lowenstam, D.P. Abbott: Vaterite: A mineralization product of the hard tissues of a marine organism (Ascidiacea), Science 188(4186), 363–365 (1975)

    Article  CAS  Google Scholar 

  55. R. Lakshminarayanan, E.O. Chi-Jin, X.J. Loh, R.M. Kini, S. Valiyaveettil: Purification and characterization of a Vaterite-inducing peptide, Pelovaterin, from the eggshells of Pelodiscus sinensis (Chinese soft-shelled turtle), Biomacromolecules 6(3), 1429–1437 (2005)

    Article  CAS  Google Scholar 

  56. N. Spann, E.M. Harper, D.C. Aldridge: The unusual mineral Vaterite in shells of the freshwater bivalve Corbicula fluminea from the UK, Naturwissenschaften 97, 743–751 (2010)

    Article  CAS  Google Scholar 

  57. A. Sigel, H. Sigel, R.K.O. Sigel, I.M. Weiss, F. Marin: The role of enzymes in biomineralization processes. In: Biomineralization: From Nature to Application, Metal Ions in Life Sciences, Vol. 4, ed. by A. Sigel, H. Sigel, R.K.O. Sigel (Wiley, Chichester 2010) pp. 71–126

    Google Scholar 

  58. L. Wang, M. Nilsen-Hamilton: Biomineralization proteins: From vertebrates to bacteria, Front. Biol. 8(2), 234–246 (2013)

    Article  CAS  Google Scholar 

  59. J. Wu, J. Yao, Y. Cai: Biomineralization of natural nanomaterials. In: Nature's Nanostructures, ed. by A.S. Barnard, H. Guo (Pan Stanford, Singapore 2012) pp. 225–248

    Chapter  Google Scholar 

  60. E. Bäuerlein: Growth and form: What is the aim of biomineralization? In: Handbook of Biomineralization: Biological Aspects and Structure Formation, ed. by E. Bäuerlein (Wiley-VCH, Weinheim 2008) pp. 1–20

    Google Scholar 

  61. J.R. Young, K. Henriksen: Biomineralization within vesicles: The calcite of coccoliths. In: Biomineralization, Reviews in Mineralogy and Geochemistry, Vol. 54, ed. by P.M. Dove, J.J. De Yoreo, S. Weiner (Mineralogical Society of America, Chantilly 2003) pp. 189–216

    Google Scholar 

  62. H.D. Isenberg, L.S. Lavine, M.L. Moss, D. Kupferstein, P.E. Lear: Calcification in a marine coccolithophorid, Ann. NY Acad. Sci. 109, 49–64 (1963)

    Article  CAS  Google Scholar 

  63. I.C. Gebeshuber: Biotribology inspires new technologies, Nano Today 2(5), 30–37 (2007)

    Article  Google Scholar 

  64. K.M. Towe, H.A. Lowenstam: Ultrastructure and development of iron mineralization in the radular teeth of Cryptochiton stelleri (mollusca), J. Ultrast. Res. 17(1/2), 1–13 (1967)

    Article  CAS  Google Scholar 

  65. V.R. Phoenix, K.O. Konhauser, D.G. Adams, S.H. Bottrell: Role of biomineralization as an ultraviolet shield: Implications for Archean life, Geology 29(9), 823–826 (2001)

    Article  CAS  Google Scholar 

  66. D.R. Lide (Ed.): Handbook of Chemistry and Physics, 80th edn. (CRC, Boca Raton 1999)

    Google Scholar 

  67. M.D. Symes, P.J. Kitson, J. Yan, C.J. Richmond, G.J.T. Cooper, R.W. Bowman, T. Vilbrandt, L. Cronin: Integrated 3D-printed reactionware for chemical synthesis and analysis, Nat. Chem. 4, 349–354 (2012)

    Article  CAS  Google Scholar 

  68. R.D. Johnson: Custom labware: Chemical creativity with 3D printing, Nat. Chem. 4, 338–339 (2012)

    Article  CAS  Google Scholar 

  69. F. Natalio, T.P. Corrales, M. Panthöfer, D. Schollmeyer, I. Lieberwirth, W.E.G. Müller, M. Kappl, H.-J. Butt, W. Tremel: Flexible minerals: Self-assembled calcite spicules with extreme bending strength, Science 339(6125), 1298–1302 (2013)

    Article  CAS  Google Scholar 

  70. H. Cölfen, S. Mann: Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures, Angew. Chem. Int. Ed. Engl. 42(21), 2350–2365 (2003)

    Article  Google Scholar 

  71. D.E. Morse: Biomolecular mechanism of silica synthesis opens novel routes to low-temperature nanofabrication of semiconductors and other advanced materials, Bio Micro and Nanosyst. Conf. BMN '06 (2006), IEEE Explorer, 2 page abstract

    Google Scholar 

  72. C. Jeffryes, T. Gutu, J. Jiao, G.L. Rorrer: Two-stage photobioreactor process for the metabolic insertion of nanostructured germanium into the silica microstructure of the diatom Pinnularia sp., Mater. Sci. Eng. C 28(1), 107–118 (2008)

    Article  CAS  Google Scholar 

  73. M.A. Meyers, P.-Y. Chen, A.Y.-M. Lin, Y. Seki: Biological materials: Structure and mechanical properties, Progr. Mater. Sci. 53, 1–206 (2008)

    Article  CAS  Google Scholar 

  74. J. Aizenberg: New nanofabrication strategies: Inspired by biomineralization, MRS Bulletin 35, 323–330 (2010)

    Article  CAS  Google Scholar 

  75. D. Green, D. Walsh, S. Mann, R.O.C. Oreffo: The potential of biomimesis in bone tissue engineering: Lessons from the design and synthesis of invertebrate skeletons, Bone 30, 810–815 (2002)

    Article  CAS  Google Scholar 

  76. S.A. Clarke, P. Walsh, C.A. Maggs, F. Buchanan: Designs from the deep: Marine organisms for bone tissue engineering, Biotechnol. Adv. 29(6), 610–617 (2011)

    Article  CAS  Google Scholar 

  77. S. Auzoux-Bordenave, I. Domart-Coulon: Marine invertebrate cell cultures as tools for biomineralization studies, J. Sci. Halieut. Aquat. 2, 42–47 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ille C. Gebeshuber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gebeshuber, I.C. (2015). Biomineralization in Marine Organisms. In: Kim, SK. (eds) Springer Handbook of Marine Biotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53971-8_58

Download citation

Publish with us

Policies and ethics