Advertisement

Biomineralization in Marine Organisms

  • Ille C. Gebeshuber
Part of the Springer Handbooks book series (SHB)

Abstract

This chapter describes biominerals and the marine organisms that produce them. The proteins involved in biomineralization, as well as functions of the biomineralized structures, are treated. Current and future applications of bioinspired material synthesis in engineering and medicine highlight the enormous potential of biomineralization in marine organisms and the status, challenges, and prospects regarding successful marine biotechnology.

Keywords

Calcium Carbonate Acidithiobacillus Ferrooxidans Magnetotactic Bacterium Marine Biotechnology Glass Sponge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
BSP

sialoprotein

CdS

cadmium sulfide

Cr

chromium

DNA

deoxyribonucleic acid

MEMS/NEMS

micro- and nanoelectromechanical systems

MEMS

microelectromechanical system

MISS

microbially induced sedimentary structures

Ni

nickel

PSP

paralytic shellfish poisoning

RNA

ribonucleic acid

SLRP

small leucine-rich repeat proteoglycan

UV

ultraviolet

References

  1. [58.1]
    Ocean Studies Board, Board on Life Sciences: Marine Biotechnology in the Twenty-First century: Problems, Promise, and Products (The National Academic, Washington 2002)Google Scholar
  2. [58.2]
    J.J. De Yoreo, P.M. Dove: Shaping crystals with biomolecules, Science 306(5700), 1301–1302 (2004)CrossRefGoogle Scholar
  3. [58.3]
    J. Seto (Ed.): Advanced Topics in Biomineralization (InTech, Rijeka, Shanghai 2012)Google Scholar
  4. [58.4]
    S. Mann: Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry (Oxford Univ. Press, Oxford 2001)Google Scholar
  5. [58.5]
    M. Brasier: Why do lower plants and animals biomineralize?, Paleobiology 12(3), 241–250 (1986)Google Scholar
  6. [58.6]
    D.G. Mann, S.J.M. Droop: 3. Biodiversity, biogeography and conservation of diatoms, Hydrobiologia 336(1–3), 19–32 (1996)CrossRefGoogle Scholar
  7. [58.7]
    J.L. Mero: The Mineral Resources of the Sea (Elsevier, Amsterdam 1965)Google Scholar
  8. [58.8]
    G.M. Gadd: Metals, minerals and microbes: Geomicrobiology and bioremediation, Microbiology 156(3), 609–643 (2010)CrossRefGoogle Scholar
  9. [58.9]
    W.N.C. Anderson: Hyperaccumulation by plants. In: Element Recovery and Sustainability, ed. by A.J. Hunt (Royal Society of Chemistry, Cambridge 2013) pp. 114–139CrossRefGoogle Scholar
  10. [58.10]
    L.L. Barton, D.E. Northup: Microbial Ecology (Wiley-Blackwell, Hoboken 2011)CrossRefGoogle Scholar
  11. [58.11]
    E.C. Theil, K.N. Raymond: Transition-Metal Storage, transport, and biomineralization. In: Bioinorganic Chemistry, ed. by I. Bertini, H.B. Gray, S.J. Lippard, J.S. Valentine (University Science Books, Mill Valley 1994) pp. 1–35Google Scholar
  12. [58.12]
    J.H. Martin, R.M. Gordon: Northeast Pacific iron distributions in relation to phytoplankton productivity, Deep-Sea Res. 35, 177–196 (1988)CrossRefGoogle Scholar
  13. [58.13]
    F. Egami: Minor elements and evolution, J. Mol. Evol. 4(2), 113–120 (1974)CrossRefGoogle Scholar
  14. [58.14]
    C. Sennett, L.E. Rosenberg, I.S. Mellman: Transmembrane transport of cobalamin in prokaryotic and eukaryotic cells, Annu. Rev. Biochem. 50, 1053–1086 (1981)CrossRefGoogle Scholar
  15. [58.15]
    O.H. Tuovinen, D.P. Kelly: Use of micro-organisms for the recovery of metals, Int. Metall. Rev. 19, 21–31 (1974)Google Scholar
  16. [58.16]
    W.F. McIlhenny, D.A. Ballard: The sea as a source of dissolved chemicals, Proc. 144th Natl. Am. Chem. Soc. Meet., Washington (1963) pp. 122–131Google Scholar
  17. [58.17]
    J.C. Deelman: Microbial mineral maricultures, a possibility?, Aquaculture 1, 393–416 (1972)CrossRefGoogle Scholar
  18. [58.18]
    A. Teske: Deep sea hydrothermal vents. In: The Desk Encyclopedia of Microbiology, 2nd edn., ed. by M. Schaechter (Academia, Oxford 2009) pp. 346–356Google Scholar
  19. [58.19]
    W.E.G. Müller (Ed.): Molecular Biomineralization: Aquatic Organisms Forming Extraordinary Materials (Springer, Heidelberg 2011)Google Scholar
  20. [58.20]
    H.L. Ehrlich, D.K. Newman: Geomicrobiology, 5th edn. (CRC Press, Boca Raton 2008)CrossRefGoogle Scholar
  21. [58.21]
    S. Castanier, G. Le Métayer-Levrel, J.-P. Perthuisot: Ca-carbonates precipitation and limestone genesis – The microbiogeologist point of view, Sed. Geol. 126(1–4), 9–23 (1999)Google Scholar
  22. [58.22]
    A. Ridgwell, R.E. Zeebe: The role of the global carbonate cycle in the regulation and evolution of the earth system, Earth Planet. Sci. Lett. 234, 299–315 (2005)CrossRefGoogle Scholar
  23. [58.23]
    H. Ehrlich: Biological Materials of Marine Origin: Invertebrates (Biologically-Inspired Systems) (Springer, Dordrecht 2010)CrossRefGoogle Scholar
  24. [58.24]
    H.A. Lowenstam, S. Weiner: On Biomineralization (Oxford Univ. Press, New York 1989)Google Scholar
  25. [58.25]
    S. Weiner, L. Addadi: At the cutting edge (perspectives), Science 298, 375–376 (2002)CrossRefGoogle Scholar
  26. [58.26]
    S. Weiner, P.M. Dove: An overview of biomineralization processes and the problem of the vital effect. In: Biomineralization, Reviews in Mineralogy and Geochemistry, Vol. 54, ed. by P.M. Dove, J.J. De Yoreo, S. Weiner (Mineralogical Society of America, Chantilly 2003) pp. 1–29Google Scholar
  27. [58.27]
    F. Bosselmann, M. Epple: Sulfate-containing biominerals. In: Biomineralization: From Nature to Application, Metal Ions in Life Sciences, Vol. 4, ed. by A. Sigel, H. Sigel, R.K.O. Sigel (Wiley, Chichester 2008) pp. 207–217Google Scholar
  28. [58.28]
    S. Silver: The bacterial view of the periodic table: Specific functions for all elements, Rev. Mineral. Geochem. 35, 345–360 (1997)Google Scholar
  29. [58.29]
    K.N. Thakkar, S.S. Mhatre, R.Y. Parikh: Biological synthesis of metallic nanoparticles, Nanomed. Nanotech. Biol. Med. 6(2), 257–262 (2010)CrossRefGoogle Scholar
  30. [58.30]
    H.C. Lichtenegger, T. Schoeberl, J.T. Ruokolainen, J.O. Cross, S.M. Heald, H. Birkedal, J.H. Waite, G.D. Stucky: Zinc and mechanical prowess in the jaws of Nereis, a marine worm, Proc. Natl. Acad. Sci. USA 100(16), 9144–9149 (2003)CrossRefGoogle Scholar
  31. [58.31]
    H.C. Lichtenegger, T. Schoeberl, M.H. Bartl, H. Waite, G.D. Stucky: High abrasion resistance with sparse mineralization: Copper biomineral in worm jaws, Science 298(5592), 389–392 (2002)CrossRefGoogle Scholar
  32. [58.32]
    W.C. Ghiorse: Biology of iron-and manganese-depositing bacteria, Annu. Rev. Microbiol. 38, 515–550 (1984)CrossRefGoogle Scholar
  33. [58.33]
    H. Stolp: Microbial ecology: Organisms, Habitats, Activities (Cambridge Univ. Press, Cambridge 1988)Google Scholar
  34. [58.34]
    H.H. Hanert: Bacterial and chemical Iron oxide deposition in a shallow bay on Palea Kameni, Santorini, Greece, Geomicrobiol. J. 19, 317–342 (2002)CrossRefGoogle Scholar
  35. [58.35]
    H.H. Hanert: ed. by A. Balows, H. G. Trüper, M. Dworkin, W. Harder, K. H. Schliefer, The genus Gallionella. In: The Prokaryotes, Vol. 4, 2nd edn. (Springer, New York 1992) pp. 4082–4088Google Scholar
  36. [58.36]
    D. Emerson, C.L. Moyer: Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi seamount hydrothermal vents and play a major role in Fe oxide deposition, Appl. Environ. Microbiol. 68(6), 3085–3093 (2002)CrossRefGoogle Scholar
  37. [58.37]
    K.V. Ewart, Q. Lin, C.L. Hew: Structure, function and evolution of antifreeze proteins, Cell. Mol. Life Sci. 55(2), 271–283 (1999)CrossRefGoogle Scholar
  38. [58.38]
    D.A. Bazylinski, R.B. Frankel: Magnetosome formation in prokaryotes, Nat. Rev. Microbiol. 2, 217–230 (2004)CrossRefGoogle Scholar
  39. [58.39]
    T.M. Kapłon, A. Michnik, Z. Drzazga, K. Richter, M. Kochman, A. Ożyhara: The rod-shaped conformation of Starmaker, Biochim. Biophys. Act. Prot. Proteom. 1794(11), 1616–1624 (2009)CrossRefGoogle Scholar
  40. [58.40]
    R.B. Frankel, D.A. Bazylinski: Biologically induced mineralization by bacteria. In: Biomineralization, Reviews in Mineralogy and Geochemistry, Vol. 54, ed. by P.M. Dove, J.J. De Yoreo, S. Weiner (Mineralogical Society of America, Chantilly 2003) pp. 95–114Google Scholar
  41. [58.41]
    D.A. Bazylinski, R.B. Frankel, K.O. Konhauser: Modes of biomineralization of magnetite by microbes, Geomicrobiol. J. 24(6), 465–475 (2007)CrossRefGoogle Scholar
  42. [58.42]
    J.L. Kirschvink, A. Kobayashi-Kirschvink, B.J. Woodford: Magnetite biomineralization in the human brain, Proc. Natl. Acad. Sci. USA 89(16), 7683–7687 (1992)CrossRefGoogle Scholar
  43. [58.43]
    B.L. Smith, T.E. Schäffer, M. Viani, J.B. Thompson, N.A. Frederick, J. Kindt, A. Belcher, G.D. Stucky, D.E. Morse, P.K. Hansma: Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites, Nature 399, 761–763 (1999)CrossRefGoogle Scholar
  44. [58.44]
    J. Erez: The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies. In: Biomineralization, Reviews in Mineralogy and Geochemistry, Vol. 54, ed. by P.M. Dove, J.J. De Yoreo, S. Weiner (Mineralogical Society of America, Chantilly 2003) pp. 115–150Google Scholar
  45. [58.45]
    M.A. Yurong, Q.I. Limin: Biomineralization of sea urchin teeth, Front. Chem. China 5(3), 299–308 (2010)CrossRefGoogle Scholar
  46. [58.46]
    F.E. Round, R.M. Crawford, D.G. Mann: Diatoms: Biology and Morphology of the Genera (Cambridge Univ. Press, Cambridge 2007)Google Scholar
  47. [58.47]
    I.C. Gebeshuber, H. Stachelberger, M. Drack: Diatom bionanotribology – Biological surfaces in relative motion: Their design, friction, adhesion, lubrication and wear, J. Nanosci. Nanotechnol. 5(1), 79–87 (2005)CrossRefGoogle Scholar
  48. [58.48]
    I.C. Gebeshuber, R.M. Crawford: Micromechanics in biogenic hydrated silica: Hinges and interlocking devices in diatoms, Proc. IMechE Part J: J. Eng. Tribol. 220(J8), 787–796 (2006)CrossRefGoogle Scholar
  49. [58.49]
    R.O. Ritchie: The conflicts between strength and toughness, Nat. Mater. 10, 817–822 (2011)CrossRefGoogle Scholar
  50. [58.50]
    M. Dohrmann, D. Janussen, J. Reitner, A.G. Collins, G. Worheide: Phylogeny and evolution of glass sponges (porifera, hexactinellida), Syst. Biol. 57(3), 388–405 (2008)CrossRefGoogle Scholar
  51. [58.51]
    A. Foda, J.H. Vandermeulen, J.J. Wrench: Uptake and conversion of Selenium by a marine bacterium, Canad. J. Fish. Aquat. Sci. 40(S2), 215–220 (1983)CrossRefGoogle Scholar
  52. [58.52]
    M. Lenz, B. Kolvenbach, B. Gygax, S. Moes, P.F.X. Corvini: Shedding light on Selenium biomineralization: Proteins associated with bionanominerals, Appl. Environ. Microbiol. 77(13), 4676–4680 (2011)CrossRefGoogle Scholar
  53. [58.53]
    M. McEnery, J.J. Lee: Tracer studies on calcium and strontium mineralization and mineral cycling in two species of foraminifera, Rosalina leei and Spiroloculina hyaline, Limn. Oceanograph. 15(2), 173–182 (1970)CrossRefGoogle Scholar
  54. [58.54]
    H.A. Lowenstam, D.P. Abbott: Vaterite: A mineralization product of the hard tissues of a marine organism (Ascidiacea), Science 188(4186), 363–365 (1975)CrossRefGoogle Scholar
  55. [58.55]
    R. Lakshminarayanan, E.O. Chi-Jin, X.J. Loh, R.M. Kini, S. Valiyaveettil: Purification and characterization of a Vaterite-inducing peptide, Pelovaterin, from the eggshells of Pelodiscus sinensis (Chinese soft-shelled turtle), Biomacromolecules 6(3), 1429–1437 (2005)CrossRefGoogle Scholar
  56. [58.56]
    N. Spann, E.M. Harper, D.C. Aldridge: The unusual mineral Vaterite in shells of the freshwater bivalve Corbicula fluminea from the UK, Naturwissenschaften 97, 743–751 (2010)CrossRefGoogle Scholar
  57. [58.57]
    A. Sigel, H. Sigel, R.K.O. Sigel, I.M. Weiss, F. Marin: The role of enzymes in biomineralization processes. In: Biomineralization: From Nature to Application, Metal Ions in Life Sciences, Vol. 4, ed. by A. Sigel, H. Sigel, R.K.O. Sigel (Wiley, Chichester 2010) pp. 71–126Google Scholar
  58. [58.58]
    L. Wang, M. Nilsen-Hamilton: Biomineralization proteins: From vertebrates to bacteria, Front. Biol. 8(2), 234–246 (2013)CrossRefGoogle Scholar
  59. [58.59]
    J. Wu, J. Yao, Y. Cai: Biomineralization of natural nanomaterials. In: Nature's Nanostructures, ed. by A.S. Barnard, H. Guo (Pan Stanford, Singapore 2012) pp. 225–248CrossRefGoogle Scholar
  60. [58.60]
    E. Bäuerlein: Growth and form: What is the aim of biomineralization? In: Handbook of Biomineralization: Biological Aspects and Structure Formation, ed. by E. Bäuerlein (Wiley-VCH, Weinheim 2008) pp. 1–20Google Scholar
  61. [58.61]
    J.R. Young, K. Henriksen: Biomineralization within vesicles: The calcite of coccoliths. In: Biomineralization, Reviews in Mineralogy and Geochemistry, Vol. 54, ed. by P.M. Dove, J.J. De Yoreo, S. Weiner (Mineralogical Society of America, Chantilly 2003) pp. 189–216Google Scholar
  62. [58.62]
    H.D. Isenberg, L.S. Lavine, M.L. Moss, D. Kupferstein, P.E. Lear: Calcification in a marine coccolithophorid, Ann. NY Acad. Sci. 109, 49–64 (1963)CrossRefGoogle Scholar
  63. [58.63]
    I.C. Gebeshuber: Biotribology inspires new technologies, Nano Today 2(5), 30–37 (2007)CrossRefGoogle Scholar
  64. [58.64]
    K.M. Towe, H.A. Lowenstam: Ultrastructure and development of iron mineralization in the radular teeth of Cryptochiton stelleri (mollusca), J. Ultrast. Res. 17(1/2), 1–13 (1967)CrossRefGoogle Scholar
  65. [58.65]
    V.R. Phoenix, K.O. Konhauser, D.G. Adams, S.H. Bottrell: Role of biomineralization as an ultraviolet shield: Implications for Archean life, Geology 29(9), 823–826 (2001)CrossRefGoogle Scholar
  66. [58.66]
    D.R. Lide (Ed.): Handbook of Chemistry and Physics, 80th edn. (CRC, Boca Raton 1999)Google Scholar
  67. [58.67]
    M.D. Symes, P.J. Kitson, J. Yan, C.J. Richmond, G.J.T. Cooper, R.W. Bowman, T. Vilbrandt, L. Cronin: Integrated 3D-printed reactionware for chemical synthesis and analysis, Nat. Chem. 4, 349–354 (2012)CrossRefGoogle Scholar
  68. [58.68]
    R.D. Johnson: Custom labware: Chemical creativity with 3D printing, Nat. Chem. 4, 338–339 (2012)CrossRefGoogle Scholar
  69. [58.69]
    F. Natalio, T.P. Corrales, M. Panthöfer, D. Schollmeyer, I. Lieberwirth, W.E.G. Müller, M. Kappl, H.-J. Butt, W. Tremel: Flexible minerals: Self-assembled calcite spicules with extreme bending strength, Science 339(6125), 1298–1302 (2013)CrossRefGoogle Scholar
  70. [58.70]
    H. Cölfen, S. Mann: Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures, Angew. Chem. Int. Ed. Engl. 42(21), 2350–2365 (2003)CrossRefGoogle Scholar
  71. [58.71]
    D.E. Morse: Biomolecular mechanism of silica synthesis opens novel routes to low-temperature nanofabrication of semiconductors and other advanced materials, Bio Micro and Nanosyst. Conf. BMN '06 (2006), IEEE Explorer, 2 page abstractGoogle Scholar
  72. [58.72]
    C. Jeffryes, T. Gutu, J. Jiao, G.L. Rorrer: Two-stage photobioreactor process for the metabolic insertion of nanostructured germanium into the silica microstructure of the diatom Pinnularia sp., Mater. Sci. Eng. C 28(1), 107–118 (2008)CrossRefGoogle Scholar
  73. [58.73]
    M.A. Meyers, P.-Y. Chen, A.Y.-M. Lin, Y. Seki: Biological materials: Structure and mechanical properties, Progr. Mater. Sci. 53, 1–206 (2008)CrossRefGoogle Scholar
  74. [58.74]
    J. Aizenberg: New nanofabrication strategies: Inspired by biomineralization, MRS Bulletin 35, 323–330 (2010)CrossRefGoogle Scholar
  75. [58.75]
    D. Green, D. Walsh, S. Mann, R.O.C. Oreffo: The potential of biomimesis in bone tissue engineering: Lessons from the design and synthesis of invertebrate skeletons, Bone 30, 810–815 (2002)CrossRefGoogle Scholar
  76. [58.76]
    S.A. Clarke, P. Walsh, C.A. Maggs, F. Buchanan: Designs from the deep: Marine organisms for bone tissue engineering, Biotechnol. Adv. 29(6), 610–617 (2011)CrossRefGoogle Scholar
  77. [58.77]
    S. Auzoux-Bordenave, I. Domart-Coulon: Marine invertebrate cell cultures as tools for biomineralization studies, J. Sci. Halieut. Aquat. 2, 42–47 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Microengineering and NanoelectronicsUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Institute of Applied PhysicsVienna University of TechnologyViennaAustria

Personalised recommendations