Marine-Derived Fungal Metabolites

  • Sherif S. Ebada
  • Peter Proksch


Marine-derived metabolites continue to be a prolific source for bioactive natural products with a high tendency to become drug candidates. Recently, eribulin mesylate (E7389), a synthetic derivative of halichondrin B, was approved by the US FDA (Food and Drug Administration) for the treatment of breast cancer metastases, going under the trade name Halaven. Some other marine-derived pharmaceuticals have likewise already been approved and launched onto the market, including Yondelis (trabectedin), Prialt (ziconotide), Retrovir (zidovudine), Cytosar (cytarabine, Ara-C), and Vira-A (vidarabine, Ara-A). Research interests in marine natural products have increased in the last few decades, in particular with respect to compounds isolated from marine-derived fungi. In this chapter, a historical background of marine-derived pharmaceuticals and fungal metabolites will be presented, including potential classes of bioactive chemical compounds. In addition, a perspective on the sustainability of marine-derived fungi with regard to a continuous supply of bioactive compounds for market needs rather than a pursuit of other strategies such as aquafarming will be discussed.


Endophytic Fungus Absolute Configuration Human Tumor Cell Line Marine Fungus Marine Natural Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





human lung adenocarcinoma




acquired immunodeficiency syndrome


anaplastic large cell lymphoma


American Type Culture Collection


arabinofuranosyl adenine or adenine arabinoside


arebinosyl cytosine



circular dichroism


Chinese hamster ovary


chronic myeloid leukemia


central nervous system (CNS)






deoxyribonucleic acid




eribulin mesylate


electronic circular dichroism


European Medicines Agency




ethyl acetate


Food and Drug Administration


hepatitis B virus


human colorectal tumor


histone deacetylase


human immunodeficiency virus


human leukocyte elastase


histone methyltransferases


high-performance liquid chromatography


human umbilical vein endothelial cells


human cervix carcinoma cells


human liver carcinoma


Hepatoma Growth2


inosine 5 Open image in new window-monophosphate dehydrogenase


human chronic myeloid leukemia cells


human epidermoid carcinoma




maslinic acid


Michigan Cancer Foundation-7


minimum inhibitory concentration


monomethyl auristatin E


molybdate uptake transporter


mycophenolic acid


methicillin-resistant Staphylococcus aureus


mass spectroscopy


microculture tetrazolium assay




human lung cancer cell line


nuclear magnetic resonance


nuclear Overhauser and exchange spectroscopy


nonribosomal peptide synthase


non-small cell lung cancer




polyketide synthase


porcine reproductive and respiratory syndrome virus


protein tyrosine phosphatase 1B


ATCC cell line


reverse transcriptase


suberoylanilide hydroxamic acid


structure-activity relationship


human CNS cancer cell line




subintestinal vessel plexus




time-dependent density functional theory


vascular disrupting agent


inducible nitric oxide synthase


  1. [32.1]
    A.L. Harvey: Natural products in drug discovery, Drug Discov. Today 13, 894–901 (2008)CrossRefGoogle Scholar
  2. [32.2]
    T.F. Molinski, D.S. Dalisay, S.L. Lievens, J.P. Saludes: Drug development from marine natural products, Nat. Rev. Drug Discov. 8, 69–85 (2009)CrossRefGoogle Scholar
  3. [32.3]
    A.M. Mayer, K.B. Glaser, C. Cuevas, R.S. Jacobs, W. Kem, R.D. Little, J.M. McIntosh, D.J. Newman, B.C. Potts, D.E. Shuster: The odyssey of marine pharmaceuticals: A current pipeline perspective, Trends Pharmacol. Sci. 31, 255–265 (2010)CrossRefGoogle Scholar
  4. [32.4]
    S.S. Ebada, P. Proksch: Marine organisms and their prospective use in therapy of human diseases. In: Nature Helps $\ldots$ . How Plants and Other Organisms Contribute to Solve Health Problems, ed. by H. Melhorn (Springer, Berlin, Heidelberg 2011) pp. 153–190Google Scholar
  5. [32.5]
    A.R. Duckworth, G.A. Samples, A.E. Wright, S.A. Pomponi: In vitro culture of the ascidian Ecteinascidia turbinata to supply the antitumor compounds ecteinascidins, Aquaculture 241, 427–439 (2004)CrossRefGoogle Scholar
  6. [32.6]
    W. Bergmann, R.J. Feeney: Contributions to the study of marine products. XXXII, The nucleosides of sponges. I, J. Org. Chem. 16, 981–987 (1951)CrossRefGoogle Scholar
  7. [32.7]
    W. Bergmann, R.J. Feeney: The isolation of a new thymine pentoside from sponges, J. Am. Chem. Soc. 72, 2809–2810 (1950)CrossRefGoogle Scholar
  8. [32.8]
    L. Zhang, R. An, J. Wang, N. Sun, S. Zhang, J. Hu, J. Kuai: Exploring novel bioactive compounds from marine microbes, Curr. Opin. Microbiol. 8, 276–281 (2005)CrossRefGoogle Scholar
  9. [32.9]
    T. Mavromoustakos, T. Calogeropoulou, M. Koufaki, A. Kolocouris, I. Daliani, C. Demetzos, Z. Meng, A. Makriyannis, J. Balzarini, E. De Clercq: Ether phospholipid-AZT conjugates possessing anti-HIV and antitumor cell activity. Synthesis, conformational analysis, and study of their thermal effects on membrane bilayers, J. Med. Chem. 44, 1702–1709 (2001)CrossRefGoogle Scholar
  10. [32.10]
    R. Yarchoan, R. Klecker, K. Weinhold, P.D. Markham, H.K. Lyerly, D.T. Durack, E. Gelmann, S.N. Lehrman, R.M. Blum, D.W. Barry: Administration of 3'-azido-3'-deoxythymidine, an inhibitor of HTLV-III/LAV replication, to patients with AIDS or AIDS-related complex, Lancet 1, 575–580 (1986)CrossRefGoogle Scholar
  11. [32.11]
    H. Mitsuya, R. Yarchoan, S. Broder: Molecular targets for AIDS therapy, Science 249, 1533–1544 (1990)CrossRefGoogle Scholar
  12. [32.12]
    J. Balzarini, G.J. Kang, M. Dalal, P. Herdewijn, E. De Clercq, S. Broder, D.G. Johns: The anti-HTLV-III (anti-HIV) and cytotoxic activity of 2',3'-didehydro-2',3'-dideoxyribonucleosides: A comparison with their parental 2',3'-dideoxyribonucleosides, Mol. Pharmacol. 32, 162–167 (1987)Google Scholar
  13. [32.13]
    R.F. Schinazi, C.K. Chu, A. Peck, A. McMillan, R. Mathis, D. Cannon, L.S. Jeonq, J.W. Beach, W.B. Choi, S. Yeola: Activities of the four optical isomers of 2',3'-dideoxy-3'-thiacytidine (BCH-189) against human immunodeficiency virus type 1 in human lymphocytes, Antimicrob. Agents Chemother. 36, 672–676 (1992)CrossRefGoogle Scholar
  14. [32.14]
    B.M. Olivera, W.R. Gray, R. Zeikus, J.M. McIntosh, J. Varga, J. Rivier, V. de Santos, L.J. Cruz: Peptide neurotoxins from fish-hunting cone snails, Science 230, 1338–1343 (1985)CrossRefGoogle Scholar
  15. [32.15]
    H. Terlau, B.M. Olivera: Conus venoms: A rich source of novel ion channel-targeted peptides, Physiol. Rev. 84, 41–68 (2004)CrossRefGoogle Scholar
  16. [32.16]
    S.S. Ebada, R.A. Edrada, W. Lin, P. Proksch: Methods for isolation, purification, and structural elucidation of bioactive secondary metabolites from marine invertebrates, Nature Protoc. 3, 1820–1831 (2008)CrossRefGoogle Scholar
  17. [32.17]
    D. Mendola: Aquaculture production of bryostatin 1 and ecteinascidin 743. In: Drugs from the Sea, ed. by N. Fusetani (Karger, Basel 2000) pp. 120–133CrossRefGoogle Scholar
  18. [32.18]
    D. Mendola: Aquaculture of three phyla of marine invertebrates to yield bioactive metabolites: Process developments and economies, Biomol. Eng. 20, 441–458 (2003)CrossRefGoogle Scholar
  19. [32.19]
    C. Cuevas, M. Pérez, M.J. Martín, J.L. Chicharro, C. Fernández-Rivas, M. Flores, A. Francesch, P. Gallego, M. Zarzuelo, F. de La Calle, J. García, C. Polanco, I. Rodríguez, I. Manzanares: Synthesis of ecteinascidin ET-743 and phthalascidin Pt-650 from cyanosafracin B, Org. Lett. 2, 2545–2548 (2000)CrossRefGoogle Scholar
  20. [32.20]
    D. Uemura, K. Takahashi, T. Yamamoto: Norhalichondrin A: An antitumor polyether macrolide from a marine sponge, J. Am. Chem. Soc. 107, 4796–4798 (1985)CrossRefGoogle Scholar
  21. [32.21]
    Y. Hirata, D. Uemura: Halichondrins–antitumor polyether macrolides from a marine sponge, Pure Appl. Chem. 58, 701–710 (1986)CrossRefGoogle Scholar
  22. [32.22]
    G.R. Pettit: The dolastatins, Prog. Chem. Org. Nat. Prod. 70, 1–79 (1997)Google Scholar
  23. [32.23]
    R. Bai, G.R. Pettit, E. Hamel: Dolastatin 10, a powerful cytostatic peptide derived from a marine animal – Inhibition of tubulin polymerization mediated through the vinca alkaloid binding domain, Biochem. Pharmacol. 39, 1941–1949 (1990)CrossRefGoogle Scholar
  24. [32.24]
    R. Bai, G.R. Pettit, E. Hamel: Binding of dolastatin 10 to tubulin at a distinct site for peptide antimitotic agents near the exchangeable nucleotide and vinca alkaloid sites, J. Biol. Chem. 265, 17141–17149 (1990)Google Scholar
  25. [32.25]
    S.O. Doronina, B.E. Toki, M.Y. Torgov, B.A. Mendelsohn, C.G. Cerveny, D.F. Chace, R.L. DeBlanc, R.P. Gearing, T.D. Bovee, C.B. Siegall, J.A. Francisco, A.F. Wahl, D.L. Meyer, P.D. Senter: Development of potent monoclonal antibody auristatin conjugates for cancer therapy, Nature Biotechnol. 21, 778–784 (2003)CrossRefGoogle Scholar
  26. [32.26]
    J.A. Francisco, C.G. Cerveny, D.L. Meyer, B.J. Mixan, K. Klussman, D.F. Chace, S.X. Rejniak, K.A. Gordon, R. DeBlanc, B.E. Toki, C.-L. Law, S.O. Doronina, C.B. Siegall, P.D. Senter, A.F. Wahl: cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity, Blood 102, 1458–1465 (2003)CrossRefGoogle Scholar
  27. [32.27]
    A. Younes, U. Yasothan, P. Kirkpatrick: Brentuximab vedotin, Nat. Rev. Drug Discov. 11, 19–20 (2012)CrossRefGoogle Scholar
  28. [32.28]
    K.L. Rinehart, A.M. Lithgow-Bertelloni: Dehydrodidemnin B, WO9104985 (1991)Google Scholar
  29. [32.29]
    K.L. Rinehart, J.B. Gloer, J.C. Cook, S.A. Mizsak, T.A. Scahill: Structures of the didemnins, antiviral and cytotoxic depsipeptides from a Caribbean tunicate, J. Am. Chem. Soc. 103, 1857–1859 (1981)CrossRefGoogle Scholar
  30. [32.30]
    O. Kucuk, M.L. Young, T.M. Habermann, B.C. Wolf, J. Jimeno, P.A. Cassileth: Phase II trial of didemnin B in previously treated non-Hodgkin's lymphoma: An Eastern cooperative oncology group (ECOG) study, Am. J. Clin. Oncol. 23, 273–277 (2000)CrossRefGoogle Scholar
  31. [32.31]
    B. Nuijen, M. Bouma, C. Manada, J.M. Jimeno, J.H.M. Schellens, A. Bult, J.H. Beijnen: Pharmaceutical development of anticancer drugs derived from marine sources, Anticancer Drugs 11, 793–811 (2000)CrossRefGoogle Scholar
  32. [32.32]
    C.S. Mitsiades, E.M. Ocio, A. Pandiella, P. Maiso, C. Gajate, M. Garayoa, D. Vilanova, J.C. Montero, N. Mitsiades, C.J. McMullan, N.C. Munshi, T. Hideshima, D. Chauhan, P. Aviles, G. Otero, G. Faircloth, M.V. Mateos, P.G. Richardson, F. Mollinedo, J.F. San-Miguel, K.C. Anderson: Aplidin, a marine organism-derived compound with potent antimyeloma activity in vitro and in vivo, Cancer Res. 68, 5216–5225 (2008)CrossRefGoogle Scholar
  33. [32.33]
    C. Le Tourneau, E. Raymond, S. Faivre: Aplidine: A paradigm of how to handle the activity and toxicity of a novel marine anticancer poison, Curr. Pharm. Des. 13, 3427–3439 (2007)CrossRefGoogle Scholar
  34. [32.34]
    W. Kem, F. Soti, K. Wildeboer, S. LeFrancois, L. MacDougall, D.-Q. Wei, K.-C. Chou, H.R. Arias: The nemertine toxin anabaseine and its deriative DMXBA (GTS-21): Chemical and pharmacological properties, Mar. Drugs 4, 255–273 (2006)CrossRefGoogle Scholar
  35. [32.35]
    J.J. Buccafusco, S.R. Letchworth, M. Bencherif, P.M. Lippiello: Long-lasting cognitive improvement with nicotinic receptor agonists: mechanisms of pharmacokinetic-pharmacodynamic discordance, Trends Pharmacol. Sci. 26, 352–360 (2005)CrossRefGoogle Scholar
  36. [32.36]
    H. Kitagawa, T. Takenouchi, R. Azuma, K.A. Wesnes, W.G. Kramer, D.E. Clody, A.L. Burnett: Safety, pharmacokinetics, and effects on cognitive function of multiple doses of GTS-21 in healthy, male volunteers, Neuropsychopharmacology 28, 542–551 (2003)CrossRefGoogle Scholar
  37. [32.37]
    A. Olincy, J.G. Harris, L.L. Johnson, V. Pender, S. Kongs, D. Allensworth, K. Ellis, G.O. Zerbe, S. Leonard, K.E. Stevens, J.O. Stevens, L. Martin, L.E. Adler, F. Soti, W.R. Kem, R. Freedman: Proof-of-concept trial of an α7 nicotinic agonist in schizophrenia, Arch. Gen. Psychiatr. 63, 630–638 (2006)CrossRefGoogle Scholar
  38. [32.38]
    R. Freedman, A. Olincy, R.W. Buchanan, J.G. Harris, J.M. Gold, L. Johnson, D. Allensworth, A. Guzman-Bonilla, B. Clement, M.P. Ball, J. Kutnick, V. Pender, L.F. Martin, K.E. Stevens, B.D. Wagner, G.O. Zerbe, F. Soti, W.R. Kem: Initial Phase 2 trial of a nicotinic agonist in schizophrenia, Am. J. Psych. 165, 1040–1047 (2008)CrossRefGoogle Scholar
  39. [32.39]
    B. Nicholson, G.K. Lloyd, B.R. Miller, M.A. Palladino, Y. Kiso, Y. Hayashi, S.T. Neuteboom: NPI-2358 is a tubulin-depolymerizing agent: in-vitro evidence for activity as a tumor vascular-disrupting agent, Anticancer Drugs 17, 25–31 (2006)CrossRefGoogle Scholar
  40. [32.40]
    Y. Yamazaki, K. Kohno, H. Yasui, Y. Kiso, M. Akamatsu, B. Nicholson, G. Deyanat-Yazdi, S. Neuteboom, B. Potts, G.K. Lloyd, Y. Hayashi: Tubulin photoaffinity labeling with biotin-tagged derivatives of potent diketopiperazine antimicrotubule agents, ChemBioChem 9, 3074–3081 (2008)CrossRefGoogle Scholar
  41. [32.41]
    P.J. Scheuer, M.T. Hamann: Kahalalide F: A bioactive depsipeptide from the sacoglossan mollusk Elysia rufescens and the green alga Bryopsis sp., J. Am. Chem. Soc. 115, 5825–5826 (1993)CrossRefGoogle Scholar
  42. [32.42]
    Y.H. Ling, M. Aracil, J. Jimeno, R. Perez-Soler, Y. Zou: Molecular pharmacodynamics of PM02734 (elisidepsin) as single agent and in combination with erlotinib; synergisitic activity in human non-small cell lung cancer cell lines and xenograft models, Eur. J. Cancer 45, 1855–1864 (2009)CrossRefGoogle Scholar
  43. [32.43]
    J.M. Frincke, D.J. Faulkner: Antimicrobial metabolites of the sponge Reniera sp., J. Am. Chem. Soc. 104, 265–269 (1982)CrossRefGoogle Scholar
  44. [32.44]
    H.Y. He, D.J. Faulkner: Renieramycins E and F from the sponge Reniera sp.: Reassignment of stereochemistry of the renieramycins, J. Org. Chem. 54, 5822–5824 (1989)CrossRefGoogle Scholar
  45. [32.45]
    A. Fontana, P. Cavaliere, S. Wahidulla, C.G. Naik, G. Cimino: A new antitumor isoquinoline alkaloid from the marine nudibranch Jorunna funebris, Tetrahedron 56, 7305–7308 (2000)CrossRefGoogle Scholar
  46. [32.46]
    J.F.M. Leal, V. García-Hernández, V. Moneo, A. Domingo, J.A. Bueren-Calabuig, A. Negri, F. Gago, M.J. Guillén-Navarro, P. Avilés, C. Cuevas, L.F. García-Fernández, C.M. Galmarini: Molecular pharmacology and antitumor activity of Zalypsis in several human cancer cell lines, Biochem. Pharmacol. 78, 162–170 (2009)CrossRefGoogle Scholar
  47. [32.47]
    R. Bai, S.J. Friedman, G.R. Pettit, E. Hamel: Dolastatin 15, a potent antimitotic depsipeptide derived from Dolabella auricularia – Interaction with tubulin and effects on cellular microtubules, Biochem. Pharmacol. 43, 2637–2645 (1992)CrossRefGoogle Scholar
  48. [32.48]
    A. Ray, T. Okouneva, T. Manna, H.P. Miller, S. Schmid, L. Arthaud, R. Luduena, M.A. Jordan, L. Wilson: Mechanism of action of the microtubule-targeted antimitotic depsipeptide tasidotin (formerly ILX651) and its major metabolite tasidotin C-carboxylate, Cancer Res. 67, 3767–3776 (2007)CrossRefGoogle Scholar
  49. [32.49]
    R. Bai, M.C. Edler, P.L. Bonate, T.D. Copeland, G.R. Pettit, R.F. Luduena, E. Hamel: Intracellular activation and deactivation of tasidotin, an analog of dolastatin 15: Correlation with cytotoxicity, Mol. Pharmacol. 75, 218–226 (2009)CrossRefGoogle Scholar
  50. [32.50]
    R.H. Feling, G.O. Buchanan, T.J. Mincer, C.A. Kauffman, P.R. Jensen, W. Fenical: Salinosporamide A: A highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora, Prog. Chem. Org. Nat. Prod. 42, 355–357 (2003)Google Scholar
  51. [32.51]
    W. Fenical, P.R. Jensen, M.A. Palladino, K.S. Lam, G.K. Lloyd, B.C. Potts: Discovery and development of the anticancer agent salinosporamide A (NPI-0052), Bioorg. Med. Chem. 17, 2175–2180 (2009)CrossRefGoogle Scholar
  52. [32.52]
    M. Groll, R. Huber, B.C.M. Potts: Crystal structures of salinosporamide A (NPI-0052) and B (NPI-0047) in complex with the 20S proteasome reveal important consequences of β-lactone ring opening and a mechanism for irreversible binding, J. Am. Chem. Soc. 128, 5136–5141 (2006)CrossRefGoogle Scholar
  53. [32.53]
    D. Chauhan, L. Catley, G. Li, K. Podar, T. Hideshima, M. Velankar, C. Mitsiades, N. Mitsiades, H. Yasui, A. Letai, H. Ovaa, C. Berkers, B. Nicholson, T.H. Chao, S.T. Neuteboom, P. Richardson, M.A. Palladino, K.C. Anderson: A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from bortezomib, Cancer Cell 8, 407–419 (2005)CrossRefGoogle Scholar
  54. [32.54]
    D. Chauhan, A. Singh, M. Brahmandam, K. Podar, T. Hideshima, P. Richardson, N. Munshi, M.A. Palladino, K.C. Anderson: Combination of proteasome inhibitors bortezomib and NPI-0052 trigger in vivo synergistic cytotoxicity in multiple myeloma, Blood 111, 1654–1664 (2008)CrossRefGoogle Scholar
  55. [32.55]
    R. Talpir, Y. Benayahu, Y. Kashman, L. Pannell, M. Schleyer: Hemiasterlin and geodiamolide TA; two new cytotoxic peptides from the marine sponge Hemiasterella minor (Kirkpatrick), Tetrahedron Lett. 35, 4453–4456 (1994)CrossRefGoogle Scholar
  56. [32.56]
    J.E. Coleman, E.D. de Silva, F. Kong, R.J. Andersen: Cytotoxic peptides from the marine sponge Cymbastela sp., Tetrahedron 51, 10653–10662 (1995)CrossRefGoogle Scholar
  57. [32.57]
    W.R. Gamble, N.A. Durso, R.W. Fuller, C.K. Westergaard, T.R. Johnson, D.L. Sackett, E. Hamel, J.H. Cardellina, M.R. Boyd: Cytotoxic and tubulin-interactive hemiasterlins from Auletta sp. and Siphonochalina sp. sponges, Bioorg. Med. Chem. 7, 1611–1615 (1999)CrossRefGoogle Scholar
  58. [32.58]
    H.J. Anderson, J.E. Coleman, R.J. Andersen, M. Roberge: Cytotoxic peptides hemiasterlin, hemiasterlin A and hemiasterlin B induce mitotic arrest and abnormal spindle formation, Cancer Chemother. Pharmacol. 39, 223–226 (1997)CrossRefGoogle Scholar
  59. [32.59]
    J.E. Coleman, B.O. Patrick, R.J. Andersen, S.J. Rettig: Hemiasterlin methyl ester, Acta Crystallogr. C52, 1525–1527 (1996)Google Scholar
  60. [32.60]
    F. Loganzo, C.M. Discafani, T. Annable, C. Beyer, S. Musto, M. Hari, X. Tan, C. Hardy, R. Hernandez, M. Baxter, C. Singanallore, G. Khafizova, M.S. Poruchynsky, T. Fojo, J.A. Nieman, S. Ayral-Kaloustain, A. Zask, R.J. Andersen, L.M. Greenberger: Antimirotubule agent that circumvents P-glycoprotein-mediated resistance in vitro and in vivo, Cancer Res. 63, 1838–1845 (2003)Google Scholar
  61. [32.61]
    M.J. Ratain, S. Undevia, L. Janisch, S. Roman, P. Mayer, M. Buckwalter, D. Foss, B.L. Hamilton, J. Fischer, R.M. Bukowski: Phase 1 and pharmacological study of HTI-286, a novel antimicrotubule agent: Correlation of neutropenia with time above a threshold serum concentration, Proc. Am. Soc. Clin. Oncol. 22, 516 (2003)Google Scholar
  62. [32.62]
    B.A. Hadaschik, S. Ettinger, R.D. Sowery, A. Zoubeidi, R.J. Andersen, M. Roberge, M.E. Gleave: Targeting prostate cancer with HTI-286, a synthetic analogue of the marine sponge product hemiasterlin, Int. J. Cancer 122, 2368–2376 (2008)CrossRefGoogle Scholar
  63. [32.63]
    G.R. Pettit, C.L. Herald, D.L. Doubek, D.L. Herald, E. Arnold, J. Clardy: Isolation and structure of bryostatin 1, J. Am. Chem. Soc. 104, 6846–6848 (1982)CrossRefGoogle Scholar
  64. [32.64]
    G.R. Pettit: Progress in the discovery of biosynthetic anticancer drugs, J. Nat. Prod. 59, 812–821 (1996)CrossRefGoogle Scholar
  65. [32.65]
    M.A. Rouhi: Supply issues complicate track of chemicals from sea to market, Chem. Eng. News 73, 42–44 (1995)CrossRefGoogle Scholar
  66. [32.66]
    L.H. Cragg, M. Andreeff, E. Feldman, J. Roberts, A. Murgo, M. Winning, M.B. Tombes, G. Roboz, L. Kramer, S. Grant: Phase I trial and correlative laboratory studies of bryostatin 1 (NSC 339555) and high-dose 1-β-D-arabinofuranosylcytosine in patients with refractory acute leukemia, Clin. Cancer Res. 8, 2123–2133 (2002)Google Scholar
  67. [32.67]
    A. Dowlati, H.M. Lazarus, P. Hartman, J.W. Jacobberger, C. Whitacre, S.L. Gerson, P. Ksenich, B.W. Cooper, P.S. Frisa, M. Gottlieb, A.J. Murgo, S.C. Remick: Phase I and correlative study of combination bryostatin 1 and vincristine in relapsed B-cell malignancies, Clin. Cancer Res. 9, 5929–5935 (2003)Google Scholar
  68. [32.68]
    J.A. Ajani, Y. Jiang, J. Faust, B.B. Chang, L. Ho, J.C. Yao, S. Rousey, S. Dakhil, R.C. Cherny, C. Craig, A. Bleyer: A multi-center phase II study of sequential paclitaxel and bryostatin 1 (NSC 339555) in patients with untreated, advanced gastric or gastroesophageal junction adenocarcinoma, Investig. New Drugs 24, 353–357 (2006)CrossRefGoogle Scholar
  69. [32.69]
    A.M.S. Mayer, K.R. Gustafson: Marine pharmacology in 2005–2006: Antitumor and cytotoxic compounds, Eur. J. Cancer 44, 2357–2387 (2008)CrossRefGoogle Scholar
  70. [32.70]
    A.M.S. Mayer, A.D. Rodríguez, R.G.S. Berlinck, M.T. Hamann: Marine pharmacology in 2005–6: Marine compounds with anthelmintic, antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action, Biochim. Biophys. Acta 1790, 283–402 (2009)CrossRefGoogle Scholar
  71. [32.71]
    M.S. Laport, O.C.S. Santos, G. Muricy: Marine sponges: Potential sources of new antimicrobial drugs, Curr. Pharm. Biotechnol. 10, 86–105 (2009)CrossRefGoogle Scholar
  72. [32.72]
    A. Staniek, H.J. Woerdenbag, O. Kayser: Taxomyces andreanae: A presumed paclitaxel producer demystified?, Planta Medica 75, 1561–1566 (2009)CrossRefGoogle Scholar
  73. [32.73]
    T. Amna, S.C. Purl, V. Verma, J.P. Sharma, R.K. Khajuria, J. Musarrat, M. Spiteller, G.N. Qazi: Bioreactor studies on the endophytic fungus Entrophospora infrequens for the production of an anticancer alkaloid camptothecin, Can. J. Microbiol. 52, 189–196 (2006)CrossRefGoogle Scholar
  74. [32.74]
    V. Rukachaisirikul, N. Khamthong, Y. Sukpondma, C. Pakawatchai, S. Phongpaichit, J. Sakayaroj, K. Kirtikara: An [11]cytochalasin derivative from the marine-derived fungus Xylaria sp. PSU-F100, Chem. Pharm. Bull. 57, 1409–1411 (2009)CrossRefGoogle Scholar
  75. [32.75]
    Z. Chen, H. Huang, Y. Chen, Z. Wang, J. Ma, B. Wang, W. Zhang, C. Zhang, J. Ju: New cytochalasins from the marine-derived fungus Xylaria sp. SCSIO 156, Helv. Chim. Acta 94, 1671–1676 (2011)CrossRefGoogle Scholar
  76. [32.76]
    S.A. Neff, S.U. Lee, Y. Asami, J.S. Ahn, H. Oh, J. Baltrusaitis, J.B. VGloer, D.T. Wicklow: Aflaquinolones A–G: secondary metabolites from marine and fungicolous isolates of Aspergillus spp., J. Nat. Prod. 75, 464–472 (2012)CrossRefGoogle Scholar
  77. [32.77]
    D. Zhang, M. Satake, S. Fukuzawa, K. Sugahara, A. Niitsu, T. Shirai, K. Tachibana: Two new indole alkaloids, 2-(3,3-dimethylprop-1-ene)-costaclavine and 2-(3,3-dimethylprop-1-ene)-epicostaclavine, from the marine-derived fungus Aspergillus fumigatus, J. Nat. Med. 66, 222–226 (2012)CrossRefGoogle Scholar
  78. [32.78]
    L. Ding, H.-M. Dahse, C. Hertweck: Cytotoxic alkaloids from Fusarium incarnatum associated with the mangrove tree Aegiceras coniculatum, J. Nat. Prod. 75, 617–621 (2012)CrossRefGoogle Scholar
  79. [32.79]
    C. Almeida, N. Part, S. Bouhired, S. Kehraus, G.M. König: Stachylines A–D from the sponge-derived fungus Stachylidium sp., J. Nat. Prod. 74, 21–25 (2011)CrossRefGoogle Scholar
  80. [32.80]
    C.-S. Li, C.-Y. An, X.-M. Li, S.-S. Gao, C.-M. Cui, H.-F. Sun, B.-G. Wang: Triazole and dihydroimidazole alkaloids from the marine sediment-derived fungus Penicillium paneum SD-44, J. Nat. Prod. 74, 1331–1334 (2011)CrossRefGoogle Scholar
  81. [32.81]
    F. Zhu, G. Chen, X. Chen, M. Huang, X. Wan: Aspergicin, a new antibacterial alkaloid produced by mixed fermentation of two marine-derived mangrove epiphytic fungi, Chem. Nat. Comp. 47, 767–769 (2011)CrossRefGoogle Scholar
  82. [32.82]
    E. Julianti, H. Oh, H.-S. Lee, D.-C. Oh, K.-B. Oh, J. Shin: Acremolin, a new 1H-azirine metabolite from the marine-derived fungus Acremonium strictum, Tetrahedron Lett. 53, 2885–2886 (2012)CrossRefGoogle Scholar
  83. [32.83]
    C. Almeida, Y. Hemberger, S.M. Schmitt, S. Bouhired, L. Natesan, S. Kehraus, K. Dimas, M. Gütschow, G. Bringmann, G.M. König: Marilines A–C: novel phthalimidines from the sponge-derived fungus Stachylidium sp., Chem. Eur. J. 18, 8827–8834 (2012)CrossRefGoogle Scholar
  84. [32.84]
    W.C. Groustas, D. Dou, K.R. Alliston: Neutrophil elastase inhibitors, Expert Opin. Therap. Patents 21, 339–354 (2011)CrossRefGoogle Scholar
  85. [32.85]
    B. Korkmaz, M.S. Horwitz, D.E. Jenne, F. Gauthier: Neutrophil elastase, Proteinase 3, and cathepsin G as therapeutic targets in human diseases, Pharmacol. Rev. 62, 726–759 (2010)CrossRefGoogle Scholar
  86. [32.86]
    M.F. Elsebai, L. Natesan, S. Kehraus, I.E. Mohamed, G. Schnakenburg, F. Sasse, S. Shaaban, M. Gütschow, G.M. König: HLE-inhibitory alkaloids with a polyketide skeleton from the marine-derived fungus Coniothyrium cereal, J. Nat. Prod. 74, 2282–2285 (2011)CrossRefGoogle Scholar
  87. [32.87]
    F. Song, B. Ren, K. Yu, C. Chen, H. Guo, N. Yang, H. Gao, X. Liu, M. Liu, Y. Tong, H. Dai, H. Bai, J. Wang, L. Zhang: Quinazolin-4-one coupled with pyrrolidin-2-iminium alkaloids from marine-derived fungus Penicillium aurantiogriseum, Mar. Drugs 10, 1297–1306 (2012)CrossRefGoogle Scholar
  88. [32.88]
    L. Chen, K. Huang, P. Zhong, X. Hu, Z.-X. Fang, J.-L. Wu, Q.-Q. Zhang: Tumonoic acids K and L, novel metabolites from the marine-derived fungus Penicillium citrinum, Heterocycles 85, 413–419 (2012)CrossRefGoogle Scholar
  89. [32.89]
    S.S. Afiyatullov, O.I. Zhuravleva, A.S. Antonov, A.I. Kalinovsky, M.V. Pivkin, E.S. Menchinskaya, D.L. Aminin: New metabolites from the marine-derived fungus Aspergillus fumigatus, Nat. Prod. Commun. 7, 497–500 (2012)Google Scholar
  90. [32.90]
    M. El Amrani, A. Debbab, A.H. Aly, V. Wray, S. Dobrestov, W.E.G. Müller, W. Lin, D. Lai, P. Proksch: Farinomalein derivatives from an unidentified endophytic fungus isolated from the mangrove plant Avicennia marina, Tetrahedron Lett. 53, 6721–6724 (2012)CrossRefGoogle Scholar
  91. [32.91]
    H.-B. Liu, R.A. Edrada-Ebel, R. Ebel, Y. Wang, B. Schulz, S. Draeger, W.E.G. Müller, V. Wray, W.-H. Lin, P. Proksch: Ophiobolin sesterterpenoids and pyrrolidine alkaloids from the sponge-derived fungus Aspergillus ustus, Helv. Chim. Acta 94, 623–631 (2011)CrossRefGoogle Scholar
  92. [32.92]
    M.F. Elsebai, V. Rempel, G. Schnakenburg, S. Kehraus, C.E. Müller, G.M. König: Identification of a potent and selective cannabinoid CB${}_{{1}}$ receptor antagonist from Auxarthron reticulatum, ACS Med. Chem. Lett. 2, 866–869 (2011)CrossRefGoogle Scholar
  93. [32.93]
    F.-Y. Du , X.-M. Li, C.-S. Li, Z. Shang, B.-G. Wang: Cristatumins A–D, new indole alkaloids from the marine-derived endophytic fungus Eurotium cristatum EN-220, Bioorg. Med. Chem. Lett. 22, 4650–4652 (2012)CrossRefGoogle Scholar
  94. [32.94]
    H.-J. Yan, X.-M. Li, C.-S. Li, B.-G. Wang: Alkaloid and anthraquinone derivatives produced by the marine-derived endophytic fungus Eurotium rubrum, Helv. Chim. Acta 95, 163–168 (2012)CrossRefGoogle Scholar
  95. [32.95]
    F. He, Y.-L. Sun, K.-S. Liu, X.-Y. Zhang, P.-Y. Qian, Y.-F. Wang, S.-H. Qi: Indole alkaloids from marine-derived fungus Aspergillus sydowii SCSIO 00305, J. Antibiot. 65, 109–111 (2012)CrossRefGoogle Scholar
  96. [32.96]
    S.-U. Lee, Y. Asami, D. Lee, J.-H. Jang, J.S. Ahn, H. Oh: Protuboxepins A and B and protubonines A and B from the marine-derived fungus Aspergillus sp. SF-5044, J. Nat. Prod. 74, 1284–1287 (2011)CrossRefGoogle Scholar
  97. [32.97]
    Y. Sun, K. Takada, Y. Takemoto, M. Yoshida, Y. Nogi, S. Okada, S. Matsunaga: Gliotoxin analogues from a marine-derived fungus, Penicillium sp., and their cytotoxic and histone methyltransferase inhibitory activities, J. Nat. Prod. 75, 111–114 (2012)CrossRefGoogle Scholar
  98. [32.98]
    B.S. Antia, T. Aree, C. Kasettrathat, S. Wiyakrutta, O.D. Ekpa, U.J. Ekpe, C. Mahidol, S. Ruchirawat, P. Kittakoop: Itaconic acid derivatives and diketopiperazine from the marine-derived fungus Aspergillus aculeatus CRI322-03, Phytochemistry 72, 816–820 (2011)CrossRefGoogle Scholar
  99. [32.99]
    O.I. Zhuravleva, S.S. Afiyatullov, V.A. Denisenko, S.P. Ermakova, N.N. Slinkina, P.S. Dmitrenok, N.Y. Kim: Secondary metabolites from a marine-derived fungus Aspergillus carneus Blochwitz, Phytochemistry 80, 123–131 (2012)CrossRefGoogle Scholar
  100. [32.100]
    S. Cai, X. Kong, W. Wang, H. Zhou, T. Zhu, D. Li, Q. Gu: Aspergilazine A, a diketopiperazine dimer with a rare N-1 to C-6 linkage, from a marine-derived fungus Aspergillus taichungensis, Tetrahedron Lett. 53, 2615–2617 (2012)CrossRefGoogle Scholar
  101. [32.101]
    K. Trisuwan, V. Rukachaisirikul, S. Phongpaichit, S. Preedanon, J. Sakayaroj: Madiolide and pyrone derivatives from the sea fan-derived fungus Curvularia sp. PSU-F22, Arch. Pharmacal Res. 34, 709–714 (2012)CrossRefGoogle Scholar
  102. [32.102]
    H. Ren, W.-W. Liu: Nidurufin as a new cell cycle inhibitor from marine-derived fungus Penicillium flavidorsum SHK1-27, Arch. Pharmacal Res. 34, 901–905 (2011)CrossRefGoogle Scholar
  103. [32.103]
    N. Khamthong, V. Rukachaisirikul, K. Tadpetch, M. Kaewpet, S. Phongpaichit, S. Preedanon, J. Sakayaroj: Tetrahydroanthraquinone and xanthone derivatives from the marine-derived fungus Trichoderma aureoviride PSU-F95, Arch. Pharmacal Res. 35, 461–468 (2012)CrossRefGoogle Scholar
  104. [32.104]
    H. Wang, Z. Lu, H.-J. Qu, P. Liu, C. Miao, T. Zhu, J. Li, K. Hong, W. Zhu: Antimicrobial aflatoxins from the marine-derived fungus Aspergillus flavus 092008, Arch. Pharmacal Res. 35, 1387–1392 (2012)CrossRefGoogle Scholar
  105. [32.105]
    C. Almeida, S. Kehraus, M. Prudencio, G.M. König: Marilones A–C, phthalides from the sponge-derived fungus Stachylidium sp., Beil. J. Org. Chem. 7, 1636–1642 (2011)CrossRefGoogle Scholar
  106. [32.106]
    C.-L. Shao, C.-Y. Wang, M.-Y. Wei, Y.-C. Gu, Z.-G. She, P.-Y. Qian, Y.-C. Lin: Aspergilones A and B, two benzylazaphilones with an unprecedented carbon skeleton from the gorgonian-derived fungus Aspergillus sp., Bioorg. Med. Chem. Lett. 21, 690–693 (2011)CrossRefGoogle Scholar
  107. [32.107]
    Z. Chen, Z. Zheng, H. Huang, Y. Song, X. Zhang, J. Ma, B. Wang, C. Zhang, J. Ju: Penicacids A–C, three new mycophenolic acid derivatives and immunosuppressive activities from the marine-derived fungus Penicillium sp. SOF07, Bioorg. Med. Chem. Lett. 22, 3332–3335 (2012)CrossRefGoogle Scholar
  108. [32.108]
    Y. Zhang, X.-M. Li, B.-G. Wang: Anthraquinone derivatives produced by marine-derived Aspergillus versicolor EN-7, Biosci. Biotechnol. Biochem. 76, 1774–1776 (2012)CrossRefGoogle Scholar
  109. [32.109]
    J.H. Sohn, H. Oh: Protulactones A and B: Two new polyketides from the marine-derived fungus Aspergillus sp. SF-5044, Bull. Kor. Chem. Soc. 31, 1695–1698 (2010)CrossRefGoogle Scholar
  110. [32.110]
    J.X. Yang, Y. Chen, C. Huang, Z. She, Y. Lin: A new isochroman derivative from the marine fungus Phomopsis sp. (No. ZH-111), Chem. Nat. Comp. 47, 13–16 (2011)CrossRefGoogle Scholar
  111. [32.111]
    C. Li, J. Zhang, C. Shao, W. Ding, Z. She, Y. Lin: A new xanthone derivative from the co-culture broth of two marine fungi (Strain No. E33 and K38), Chem. Nat. Comp. 47, 382–384 (2011)CrossRefGoogle Scholar
  112. [32.112]
    X. Xu, S. Zhao, J. Wei, N. Fang, L. Yin, J. Sun: Porric acid D from marine-derived fungus Alternaria sp. isolated from Bohai Sea, Chem. Nat. Comp. 47, 893–895 (2011)CrossRefGoogle Scholar
  113. [32.113]
    S. Li, M. Wei, G. Chen, Y. Lin: Two new dihydroisocoumarins from the endophytic fungus Aspergillus sp. collected from the South China Sea, Chem. Nat. Comp. 48, 371–373 (2012)CrossRefGoogle Scholar
  114. [32.114]
    L. Chen, W. Liu, X. Hu, K. Huang, J.-L. Wu, Q.-Q. Zhang: Citrinin derivatives from the marine-derived fungus Penicillium citrinum, Chem. Pharm. Bull. 59, 515–517 (2011)CrossRefGoogle Scholar
  115. [32.115]
    S. Cai, T. Zhu, L. Du , B. Zhao, D. Li, Q. Gu: Sterigmatocystins from the deep-sea-derived fungus Aspergillus versicolor, J. Antibiot. 64, 193–194 (2011)CrossRefGoogle Scholar
  116. [32.116]
    M.-Y. Kim, J.-H. Sohn, J.-H. Jang, J.S. Ahn, H. Oh: Two new botcinin derivatives encountered in the studies of secondary metabolites from the marine-derived fungus Botryotinia sp. SF5275, J. Antibiot. 65, 161–164 (2012)CrossRefGoogle Scholar
  117. [32.117]
    E. Julianti, H. Oh, K.H. Jang, J.K. Lee, S.K. Lee, D.-C. Oh, K.-B. Oh, J. Shin: Acremostrictin, a highly oxygenated metabolite from the marine fungus Acremonium strictum, J. Nat. Prod. 74, 2592–2594 (2011)CrossRefGoogle Scholar
  118. [32.118]
    D. Liu, X.-M. Li, L. Meng, C.-S. Li, S.-S. Gao, Z. Shang, P. Proksch, C.-G. Huang, B.-G. Wang: Nigerapyrones A–H, α-pyrone derivatives from the marine mangrove-derived endophytic fungus Aspergillus niger MA-132, J. Nat. Prod. 74, 1787–1791 (2011)CrossRefGoogle Scholar
  119. [32.119]
    J. Liu, F. Li, E.L. Kim, J.L. Li, J. Hong, K.S. Bae, H.Y. Chung, H.S. Kim, J.H. Jung: Antibacterial polyketides from the Jellyfish-derived fungus Paecilomyces variotii, J. Nat. Prod. 74, 1826–1829 (2011)CrossRefGoogle Scholar
  120. [32.120]
    C.-J. Zheng, C.-L. Shao, Z.-Y. Guo, J.-F. Chen, D.-S. Deng, K.-L. Yang, Y.-Y. Chen, X.-M. Fu, Z.-G. She, Y.-C. Lin, C.-Y. Wang: Bioactive hydroanthraquinones and anthraquinone dimers from a soft coral-derived Alternaria sp. fungus, J. Nat. Prod. 75, 189–197 (2012)CrossRefGoogle Scholar
  121. [32.121]
    Y. Myobatake, T. Takeuchi, K. Kuramochi, I. Kuriyama, T. Ishido, K. Hirano, F. Sugawara, H. Yoshida, Y. Mizushina: Pinophilins A and B, inhibitors of mammalian A-, B-, and Y-family DNA polymerases and human cancer cell proliferation, J. Nat. Prod. 75, 135–141 (2012)CrossRefGoogle Scholar
  122. [32.122]
    V. Rukachaisirikul, A. Rodglin, Y. Sukpondma, S. Phongpaichit, J. Buatong, J. Sakayaroj: Phthalide and isocoumarin derivatives produced by an Acremonium sp. isolated from a mangrove Rhizophora apiculata, J. Nat. Prod. 75, 853–858 (2012)CrossRefGoogle Scholar
  123. [32.123]
    K.-L. Yang, M.-Y. Wei, C.-L. Shao, X.-M. Fu, Z.-Y. Guo, R.-F. Xu, C.-J. Zheng, Z.-G. She, Y.-C. Lin, C.-Y. Wang: Antibacterial anthraquinone derivatives from a sea anemone-derived fungus Nigrospora sp., J. Nat. Prod. 75, 935–941 (2012)CrossRefGoogle Scholar
  124. [32.124]
    H. Huang, F. Wang, M. Luo, Y. Chen, Y. Song, W. Zhang, S. Zhang, J. Ju: Halogenated anthraquinones from the marine-derived fungus Aspergillus sp. SCSIO FO63, J. Nat. Prod. 75, 1346–1352 (2012)CrossRefGoogle Scholar
  125. [32.125]
    C.-H. Huang, J.-H. Pan, B. Chen, M. Yu, H.-B. Huang, X. Zhu, Y.-J. Lu, Z.-G. She, Y.-C. Lin: Three bianthraquinone derivatives from the mangrove endophytic fungus Alternaria sp. ZJ9-6B from the South China Sea, Mar. Drugs 9, 832–843 (2011)CrossRefGoogle Scholar
  126. [32.126]
    O.F. Smetanina, A.N. Yurchenko, S.S. Afiyatullov, A.I. Kalinovsky, M.A. Pushilin, Y.V. Khudyakova, N.N. Slinkina, S.P. Ermakova, E.A. Yurchenko: Oxirapentyns B–D produced by a marine-sediment fungus Isaria felina (DC.) Fr., Phytochem. Lett. 5, 165–169 (2012)CrossRefGoogle Scholar
  127. [32.127]
    G.F. Zhang, W.B. Han, J.T. Cui, S.W. Ng, Z.K. Guo, R.X. Tan, H.M. Ge: Neuraminidase inhibitory polyketides from the marine-derived fungus Phoma herbarum, Planta Medica 78, 76–78 (2012)CrossRefGoogle Scholar
  128. [32.128]
    L. Chen, T. Zhu, Y. Ding, I.A. Khan, Q. Gu, D. Li: Sorbiterrin A, a novel sorbicillin derivative with cholinesterase inhibition activity from the marine-derived fungus Penicillium terrestre, Tetrahedron Lett. 53, 325–328 (2012)CrossRefGoogle Scholar
  129. [32.129]
    D. Li, L. Chen, T. Zhu, T. Kurtán, A. Mándi, Z. Zhao, J. Li, Q. Gu: Chloctanspirones A and B, novel chlorinated polyketides with an unprecedented skeleton, from marine sediment derived fungus Penicillium terrestre, Tetrahedron 67, 7913–7918 (2011)CrossRefGoogle Scholar
  130. [32.130]
    N. Khamthong, V. Rukachaisirikul, S. Phongpaichit, S. Preedanon, J. Sakayaroj: Bioactive polyketides from the sea fan-derived fungus Penicillium citrinum, Tetrahedron 68, 8245–8250 (2012)CrossRefGoogle Scholar
  131. [32.131]
    M.F. Elsebai, S. Kehraus, U. Lindequist, F. Sasse, S. Shaaban, M. Gütschow, M. Josten, H.-G. Sahl, G.M. König: Antimicrobial phenalenone derivatives from the marine-derived fungus Coniothyrium cereal, Org. Biomol. Chem. 9, 802–808 (2011)CrossRefGoogle Scholar
  132. [32.132]
    W. Ebrahim, A.H. Aly, A. Mándi, F. Totzke, M.H.G. Kubbutat, V. Wray, W.-H. Lin, H. Dai, P. Proksch, T. Kurtán, A. Debbab: Decalactone derivatives from Corynespora cassicola, an endophytic fungus of the mangrove plant Laguncularia racemosa, Eur. J. Org. Chem. 2012, 3476–3484 (2012)CrossRefGoogle Scholar
  133. [32.133]
    D. Li, Y. Xu, C.-L. Shao, R.-Y. Yang, C.-J. Zheng, Y.-Y. Chen, X.-M. Fu, P.-Y. Qian, Z.-G. She, N.J. de Voogd, C.-Y. Wang: Antibacterial bisabolane-type sesquiterpenoids from the sponge-derived fungus Aspergillus sp., Mar. Drugs 10, 234–241 (2012)CrossRefGoogle Scholar
  134. [32.134]
    L.-L. Sun, C.-L. Shao, J.-F. Chen, Z.-Y. Guo, X.-M. Fu, M. Chen, Y.-Y. Chen, R. Li, N.J. de Voogd, Z.-G. She, Y.-C. Lin, C.-Y. Wang: New bisabolane sesquiterpenoids from a marine-derived fungus Aspergillus sp. isolated from the sponge Xestospongia testudinaria, Bioorg. Med. Chem. Lett. 22, 1326–1329 (2012)CrossRefGoogle Scholar
  135. [32.135]
    N. Ingavat, C. Mahidol, S. Ruchirawat, P. Kittakoop: Asperaculin A, a sesquiterpenoid from a marine-derived fungus, Aspergillus aculeatus, J. Nat. Prod. 74, 1650–1652 (2011)CrossRefGoogle Scholar
  136. [32.136]
    T. Kawahara, M. Takagi, K. Shin-ya: JBIR-124: A novel antioxidative agent from a marine-derived fungus Penicillium citrinum SpI080624G1f01, J. Antibiot. 65, 45–47 (2012)CrossRefGoogle Scholar
  137. [32.137]
    S.-S. Gao, X.-M. Li, C.-S. Li, P. Proksch, B.-G. Wang: Penicisteroids A and B, antifungal, cytotoxic polyoxgenated steroids from the marine alga-derived endophytic fungus Penicillium chrysogenum QEN-24S, Bioorg. Med. Chem. Lett. 21, 2894–2897 (2011)CrossRefGoogle Scholar
  138. [32.138]
    X. Xia, J. Zhang, Y. Zhang, F. Wei, X. Liu, A. Jia, C. Liu, W. Li, Z. She, Y. Lin: Pimarane diterpenes from the fungus Epicoccum sp. HS-1 associated with Apostichopus japonicas, Bioorg. Med. Chem. Lett. 22, 3017–3019 (2012)CrossRefGoogle Scholar
  139. [32.139]
    L. Sun, D. Li, M. Tao, Y. Chen, F. Dan, W. Zhang: Scopararanes C–G: new oxygenated pimarane diterpenes from the marine sediment-derived fungus Eutypella scoparia FS26, Mar. Drugs 10, 539–550 (2012)CrossRefGoogle Scholar
  140. [32.140]
    E.M.K. Wijeratne, B.P. Bashyal, M.X. Liu, D.D. Rocha, G.M.K.B. Gunaherath, J.M. U'Ren, M.K. Gunatilaka, A.E. Arnold, L. Whitesell, A.A.L. Gunatilaka: Geopyxins A–E, ent-kaurane diterpenoids from endolichenic fungal strains Geopyxis aff. majalis and Geopyxis sp. AZ0066: structure-activity relationships of geopyxins and their analogues, J. Nat. Prod. 75, 361–369 (2012)CrossRefGoogle Scholar
  141. [32.141]
    E. Cohen, L. Koch, K.M. Thu, Y. Rahamim, Y. Aluma, M. Ilan, O. Yarden, S. Carmeli: Novel terpenoids of the fungus Aspergillus insuetus isolated from the Mediterranean sponge Psammocinia sp. collected along the coast of Israel, Bioorg. Med. Chem. 19, 6587–6593 (2011)CrossRefGoogle Scholar
  142. [32.142]
    M. Arai, H. Niikawa, M. Kobayashi: Marine-derived fungal sesterterpenes, ophiobolins, inhibit biofilm formation of Mycobacterium species, J. Nat. Med. 67, 271–275 (2013)CrossRefGoogle Scholar
  143. [32.143]
    L.Y. Zang, W. Wei, Y. Guo, T. Wang, R.H. Jiao, S.W. Ng, R.X. Tan, H.M. Ge: Sesquiterpenoids from the mangrove-derived endophytic fungus Diaporthe sp., J. Nat. Prod. 75, 1744–1749 (2012)CrossRefGoogle Scholar
  144. [32.144]
    I.E. Mohamed, S. Kehraus, A. Krick, G.M. König, G. Kelter, A. Maier, H.-H. Fiebig, M. Kalesse, N.P. Malek, H. Gross: Mode of action of epoxyphomalins A and B and characterization of related metabolites from the marine-derived fungus Paraconiothyrium sp., J. Nat. Prod. 73, 2053–2056 (2010)CrossRefGoogle Scholar
  145. [32.145]
    A.-F. Sun, X.-M. Li, L. Meng, C.-M. Cui, S.-S. Gao, C.-S. Li, C.-G. Huang, B.-G. Wang: Asperolides A–C, tetranorlabdane diterpenoids from the marine alga-derived endophytic fungus Aspergillus wentii EN-48, J. Nat. Prod. 75, 148–152 (2012)CrossRefGoogle Scholar
  146. [32.146]
    Y. Zhou, A. Mándi, A. Debbab, V. Wray, B. Schulz, W.E.G. Müller, W. Lin, P. Proksch, T. Kurtán, A.H. Aly: New austalides from the sponge-associated fungus Aspergillus sp., Eur. J. Org. Chem. 2011, 6009–6019 (2011)CrossRefGoogle Scholar
  147. [32.147]
    W.-L. Mei, B. Zheng, Y.-X. Zhao, H.-M. Zhong, X.-L.W. Chen, Y.-B. Zeng, W.-H. Dong, J.-L. Huang, P. Proksch, H.-F. Dai: Meroterpenes from endophytic fungus A1 of mangrove plant Scyphiphora hydrophyllacea, Mar. Drugs 10, 1993–2001 (2012)CrossRefGoogle Scholar
  148. [32.148]
    L.-N. Zhou, H.-Q. Gao, S.-X. Cai, T.-J. Zhu, Q.-Q. Gu, D.-H. Li: Two new cyclic pentapeptides from the marine-derived fungus Aspergillus versicolor, Helv. Chim. Acta 94, 1065–1070 (2011)CrossRefGoogle Scholar
  149. [32.149]
    Z. Chen, Y. Song, Y. Chen, H. Huang, W. Zhang, J. Ju: Cyclic heptapeptides, cordyheptapeptides C–E, from the marine-derived fungus Acremonium persicinum SCSIO 115 and their cytotoxic activities, J. Nat. Prod. 75, 1215–1219 (2012)CrossRefGoogle Scholar
  150. [32.150]
    H.C. Vervoort, M. Draškovic, P. Crews: Histone deacetylase inhibitors as a tool to up-regulate new fungal biosynthetic products: Isolation of EGM-556, a cyclodepsipeptide, from Microascus sp., Org. Lett. 13, 410–413 (2011)CrossRefGoogle Scholar
  151. [32.151]
    Q.X. Wu, X.J. Jin, M. Draškovic, M.S. Crews, K. Tenney, F.A. Valeriote, X.J. Yao, P. Crews: Unraveling the numerous biosynthetic products of the marine sediment-derived fungus, Aspergillus insulicola, Phytochem. Lett. 5, 114–117 (2012)CrossRefGoogle Scholar
  152. [32.152]
    W. Ebrahim, J. Kjer, M. El Amrani, V. Wray, W. Lin, R. Ebel, D. Lai, P. Proksch: Pullularins E and F, two new peptides from the endophytic fungus Bionectria ochroleuca isolated form the mangrove plant Sonneratia caseolaris, Mar. Drugs 10, 1081–1091 (2012)CrossRefGoogle Scholar
  153. [32.153]
    S.W. Meyer, T.F. Mordhorst, C. Lee, P.R. Jensen, W. Fenical, M. Köck: Penilumamide, a novel lumazine peptide isolated from the marine-derived fungus, Penicillium sp., Org. Biomol. Chem. CNL-338(8), 2158–2163 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Faculty of Pharmacy, Department of Pharmacognosy and PhytochemistryAin-Shams UniversityCairoEgypt
  2. 2.Institute of Pharmaceutical Biology and BiotechologyHeinrich-Heine UniversityDüsseldorfGermany

Personalised recommendations